Darwinismus - adé!
12.09.2009 um 15:42
Grundlagen
Vererbung
Hauptartikel Genetik
Gregor Mendel zeigte anhand von Erbsen, dass Vererbung in eng definierten (diskreten) Einheiten erfolgt. Er zeigte, dass Merkmale von den Eltern an die Nachkommen vererbt werden, und dass diese Merkmale diskret sind: Wenn ein Elternteil runde und der andere faltige Erbsen hatte, dann zeigte der Nachwuchs nicht ein Gemisch, sondern entweder runde oder faltige Erbsen. Mendel wies außerdem nach, dass die Merkmale der Eltern in einer genau definierten und vorhersagbaren Weise an die Nachkommen vererbt wurden, nämlich nach den mendelschen Regeln. Seine Forschungen waren die Basis für das Konzept der diskreten, erblichen Merkmale, der Gene.[9] Mendels Arbeiten beantworteten die lange offene Frage, warum Merkmalsvarianten in Populationen stabil bleiben.
Spätere Forschungen enthüllten schließlich die physische Basis der Gene und identifizierten die DNA als das genetische Material. Gene wurden neu definiert als spezifische Regionen der DNA. DNA wird von Lebewesen als Chromosomen gelagert. Ein bestimmter Ort auf einem Chromosom wird als Genlocus (oder kurz Locus) bezeichnet, die Variante einer DNA-Sequenz auf einem bestimmten Locus bezeichnet man als Allel. Die Kopie der DNA erfolgt nicht perfekt und Änderungen (Mutationen) der Gene produzieren neue Allele und beeinflussen daher die Merkmale, die von diesen Genen kontrolliert werden. Diese einfache Beziehung zwischen einem Gen und einem Merkmal liegt in vielen Fällen vor, komplexe Merkmale wie zum Beispiel die Widerstandsfähigkeit gegen Krankheiten werden jedoch von vielen zusammenwirkenden Genen kontrolliert.[10]
Genetische Variabilität
Die genetische Variabilität resultiert aus Mutationen der DNA, der Wanderung von Individuen zwischen Populationen (dem Genfluss), und der Durchmischung von Genen bei der sexuellen Fortpflanzung. Bei einigen Lebensformen, wie Bakterien und Pflanzen, wird Variabilität auch durch die Mischung des genetischen Materials zwischen Arten durch horizontalen Genfluss und Hybridisierung erzeugt.[11][12] Trotz all dieser Variabilität verursachenden Prozesse sind die meisten Bereiche der DNA einer Art (das Genom) bei allen Individuen einer Art identisch.[13] Vergleichsweise kleine Änderungen des Genotyps (des Merkmale kodierenden Teiles des Genoms), können jedoch erhebliche Auswirkungen auf den Phänotyp (die Gesamtheit der genetisch bedingten Merkmale eines Individuums; vereinfacht ausgedrückt, auf das genetisch bedingte äußere Erscheinungsbild) haben. Zum Beispiel unterscheidet sich das Genom von Schimpanse und Mensch nur zu 5 % voneinander.[14]
Der Phänotyp resultiert aus der Interaktion seiner individuellen genetischen Ausstattung, seines Genotyps, mit der Umwelt. Die Variabilität der vererbbaren Merkmale innerhalb einer Population reflektiert also die Variabilität des Genoms innerhalb dieser Population. Die Frequenz einzelner Merkmalsvarianten kann in einer Population schwanken und in Relation zu anderen Allelen des Gens größer oder kleiner werden. Alle evolutionär wirksamen Kräfte agieren, indem sie diese Änderungen der Allelfrequenzen in die eine oder andere Richtung fördern. Die Variabilität eines Merkmals verschwindet, wenn ein Allel eine feste Frequenz erreicht, wenn es also entweder aus der Population verschwindet oder wenn es alle anderen, früher vorhandenen Allele ersetzt hat.[15]
Mechanismen
Hauptartikel: Evolutionsfaktoren
Die beiden grundlegenden Mechanismen evolutionärer Änderungen, also der Änderungen der Allelhäufigkeiten (Allelfrequenzen) innerhalb einer Population, sind Natürliche Selektion und Gendrift. Natürliche Selektion ist die nichtzufällige Auswahl von Allelen, die einen Überlebens- und Reproduktionsvorteil bieten. Gendrift ist dazu im Gegensatz die zufällige Stichprobe der Gene einer Elterngeneration, die eine zufällige Änderung der Häufigkeit einiger Allele verursacht.
Natürliche Selektion
Hauptartikel: Natürliche Selektion
Natürliche Selektion tritt auf, weil Individuen mit Merkmalen, die für das Überleben und die Fortpflanzung vorteilhaft sind, mehr Nachwuchs produzieren können als Individuen ohne diese Merkmale. Daher werden sie mehr Kopien ihrer vererbbaren Merkmale in die nächste Generation einbringen. Dies führt dazu, dass vorteilhafte Merkmale im Laufe der Zeit häufiger werden, während unvorteilhafte seltener werden. Durch diesen Prozess können über viele Generationen unterschiedliche Anpassungen an Umweltbedingungen entstehen. Wenn genetische Differenzen innerhalb oder zwischen Populationen von Lebewesen einer Art immer zahlreicher werden, kann sich diese Art in neue Arten aufspalten (Artbildung, Speziation). Bestimmte gemeinsame Merkmale aller Lebewesen legen nahe, dass alle bekannten Arten von einer einzigen ursprünglichen Art abstammen (genauer: von einem ursprünglichen Genpool) und durch diesen Prozess der allmählichen Verstärkung von Unterschieden entstanden sind (Deszendenz).
Der Schwanz eines Pfaus ist ein klassisches Beispiel für Sexuelle Selektion
Natürliche Selektion entsteht nach Darwin aus dem unterschiedlichen Reproduktionserfolg der Individuen einer Population. Sie ergibt sich aus den folgenden Tatsachen:
Innerhalb von Populationen und zwischen Arten gibt es eine natürliche, vererbbare Variabilität
die Anzahl der Nachkommen der Individuen ist viel höher als die Kapazität des jeweiligen Lebensraumes, es herrscht also Konkurrenz.
Der Überlebens- und Reproduktionserfolg der Individuen einer Population ist daher unterschiedlich
In jeder Generation geben die erfolgreich reproduzierenden Individuen ihre vererbbaren Merkmale weiter, die nicht erfolgreichen können dies nicht.
Wenn ein Merkmal die „evolutionäre Fitness“ von Individuen erhöht, dann werden diese Individuen mit höherer Wahrscheinlichkeit überleben und reproduzieren, als andere Individuen dieser Population und daher mehr Kopien ihrer Merkmale an die nächste Generation weitergeben (survival of the fittest). Umgekehrt wird ein Fitnessverlust durch ein nachteiliges Merkmal dazu führen, dass dieses Merkmal seltener wird.[16][17]
Ein Spezialfall der Natürlichen Selektion ist die Sexuelle Selektion: Die Selektion auf Merkmale, deren Präsenz direkt mit dem Kopulationserfolg durch bevorzugte Partnerwahl korreliert ist.[18] Durch Sexuelle Selektion evolvierte Merkmale sind besonders bei den Männchen von Tieren verbreitet. Obwohl diese Merkmale die Überlebenswahrscheinlichkeit einzelner Männchen reduzieren können (z. B. durch behindernde Geweihe, durch Paarungsrufe oder leuchtende Farben, die Beutegreifer anlocken, oder durch Kämpfe unter den Männchen um die Weibchen), ist der Reproduktionserfolg von jenen Männchen im Normalfall höher, die deutliche, sexuell selektierte Merkmalskombinationen zeigen.[19]
Bei mehr als 200 Vogelarten und etwa 120 Säugerarten findet man soziale Strukturen, bei denen ein Teil der Individuen zumindest zeitweise auf eine eigene Reproduktion verzichtet und stattdessen Artgenossen bei deren Reproduktion unterstützt. Dies steht in scheinbarem Widerspruch zu Darwins Thesen. Untersuchungen dieser Helfersysteme haben jedoch gezeigt, das diese Hilfe meist umso stärker erfolgt, je näher die Helfer mit dem aufzuziehenden Nachwuchs verwandt sind.[20] Da ein Teil des Genoms von Helfer und aufgezogenem Fremdnachwuchs identisch ist, erreicht der Helfer also trotz Verzicht auf eigene Reproduktion eine Weitergabe eines Teils seines Genoms. Da die Selektion hier nicht mehr auf der Ebene des Phänotyps, sondern des Genotyps ansetzt, hat Richard Dawkins für diese und ähnliche Fälle den Begriff des "Egoistischen Gens" geprägt.[21] Bei eusozialen Insekten wie beispielsweise Ameisen und Sozialen Faltenwespen verzichtet der größte Teil der Weibchen lebenslang auf eine eigene Fortpflanzung. Eusozialität ist für diese Weibchen nicht mit einer verringerten evolutionären Fitness verbunden, da sie aufgrund einer genetischen Besonderheit (Haplodiploidie) mit ihren Schwestern näher verwandt sind als mit potentiellen eigenen Nachkommen. Bei der Aufzucht von Schwestern geben sie also einen größeren Teil ihres Genoms weiter als bei der Aufzucht eigener Töchter.[22]
Gendrift
Hauptartikel: Gendrift
Gendrift ist die Änderung von Allelfrequenzen von einer Generation zur nächsten, die geschieht, weil die Allele einer Generation von Nachkommen statistisch gesehen eine Zufallsstichprobe der Allele der Elterngeneration darstellen und deren Auswahl daher auch einem Zufallsfehler unterliegt. Selbst wenn keine Selektion stattfindet, tendieren Allelfrequenzen dazu, im Verlauf der Zeit größer oder kleiner zu werden, bis sie schließlich die Werte 0 % oder 100 % erreichen. Schwankungen der Allelfrequenzen in aufeinanderfolgenden Generationen können daher durch reinen Zufall dazu führen, dass einzelne Allele aus der Population verschwinden. Zwei getrennte Populationen mit anfänglich gleichen Allelfrequenzen können daher durch zufällige Schwankungen in zwei unterschiedliche Populationen mit einem unterschiedlichen Satz von Allelen auseinanderdriften.[23] Ob Natürliche Selektion oder Gendrift den größeren Einfluss auf das Schicksal neuer Mutationen haben, hängt von der Größe der Population und der Stärke der Selektion ab.[24] Natürliche Selektion dominiert in großen Populationen, Gendrift in kleinen. Schließlich hängt die Zeit, die ein Allel benötigt, um in einer Population durch Gendrift eine feste Frequenz zu erreichen (bis also 0 % oder 100 % der Individuen der Population das Allel tragen), von der Populationsgröße ab; bei kleineren Populationen geschieht dies schneller.[25]
Daraus folgt, das eine Veränderung der Populationsgröße einen extremen Einfluss auf den Verlauf der Evolution haben kann. Wenn eine Population aufgrund äußerer Einflüsse durch einen sogenannten "Flaschenhals" geht, zeitweise also bis auf wenige Individuen zusammenschrumpft, verliert sie damit auch einen großen Teil ihrer genetischen Variabilität (Genetischer Flaschenhals). Die Population wird dadurch insgesamt gleichartiger und verliert die meisten seltenen Varianten. Solche Flaschenhälse können durch Katastrophenereignisse oder Klimaschwankungen, aber auch durch Wanderungen oder die Teilung von Populationen verursacht werden.
Indizien