Das Erbe der MUSLIME!
27.11.2004 um 12:40Ich habe zwar schon vorher Teile dieses Textes hier veröffentlicht.
bin aber schon öfters gebeten worden, ihn mal ganz zu poasten!
Er zeigt eindeutig, um wieviel weiter und entwickelter die Muslime waren!
Da soll nochmal jemand sagen, wir Muslime seien primitive Barbaren!
Der Islam ist nie ein Hindernis für die Weiterentwicklung des Wissens in der Wissenschaft oder in der Kunst gewesen. Besonders vom 8. bis zum 13. Jahrhundert wurden in der islamischen Welt in fast allen Bereichen der Wissenschaft große Fortschritte erzielt. Im Folgenden einige prominente Vertreter:
Religiöse und philosophische Wissenschaften: al-Kindi(Alkindus, 796-866), al-Ghazali (1058-1111), al-Farabi(870-950), Ihn Sina (Avicenna, 980-1037; bekannt auch im Bereich
Medizin), Ihn Ruschd (Averroes; 1126-1198; machte Aristoteles im
Westen bekannt; verfasste Bücher über Physik, Astronomie und
Medizin), Ibn al-Arabi (1164-1240).
Recht: asch-Schafii (767-820), Abu Hanifa (699-767).
Geschichte und Soziologie: Ibn Ishaq (gest. 769), Ibn Khaldun
(1332-1406; berühmt mit seinem Meisterwerk al-Muqaddima).
Erdkunde und Topographie: Ibn Hauqal (um 975), Piri Reis
(berühmt durch seine Weltkarte von 1513). ), al-Battani (Albatenius, 858-929). Unter
dem Kalifen Ma'mun (gest. 830) wurde der Erdumfang mit einer
erstaunlichen Genauigkeit gemessen.
Astronomie: Ibn Ruschd (entdeckte die Sonnenflecken), Umar
Khayyam (ca. 1038-1123
Botanik: ad-Dinawari (gest. 895) (Die botanische Enzyklopädie).
Medizin: Ibn Sina (Buch der medizinischen Gesetze [al-Qanun]),
ar-Razi (Rhazes, 865-925; verfasste über 184 Bücher u.a. in den Bereichen Medizin und Chemie), Ibn an-Nafis (gest. 1288; entdeckte den Blutkreislauf).Zoologie: Dschahiz (gest. 868); verfasste eine große,
weitverbreitete Abhandlung über das Leben der Tiere.
Optik: al-Kindi (Das Buch der Strahlen), Ibn al-Haitham
(Alhazen, 965-1039; verfasste noch viele weitere Werke in
anderen Wissenschaften wie Chemie, Physik und Mathematik).
Chemie: Dschabir Ibn Khayyam (721-815; erster Muslim, der im Bereich der Chemie Grundlagenforschung betrieb).
Mathematik: Khwarizmi (gest. 863; weltberühmter muslimischer Mathematiker und Vater der Algebra), Umar Khayyam (ein hervorragender Algebraiker), al-Biruni (973-1051; Verfasser von 180 Werken in verschiedenen Wissenschaftszweigen wie z.B. Astronomie, Medizin, Soziologie, Geographie), al-Battani (858-929; einer der Begründer der Trigonometrie), Nasireddin at-Tusi (1201-1274; war u.a. Mathematiker, Astronom, Physiker, Philosoph). Wörter wie Algebra, Ziffern usw. sind arabischen Ursprungs.
Deutsch arabischer Ursprung Übersetzung der arabischen Bedeutung
Admiral amir ar-rahl Befehlshaber der Flotte
Albatros al-gattas Seeadler-Art
Alchemie al-kimiya Chemie
Algebra al-gabr Wiederherstellung; Das arabische Wort ist eine Abkürzung von al-gabr wa-l-muqabala, dem Titel eine algebraischen Lehrbuchs von Muhammad ibn Musa, dem Erfinder der Algebra
Alkali al-qaliy Pottasche
Alkazar al-qasr Schloss, Palast
Alkohol al-kuhl Weingeist
Almanach al-minha wörtl.: Das Geschenkte. Kalender, Neujahrsgeschenk.
Amalgam al-gima Akt der körperlichen Vereinigung
Ambra anbar Ambra
Amulett hammala Tragband
Anilin an-nil Indigopflanze
Aprikos al-baquq Pflaume
Arrak 'araq Schweiß, starker Brandwein
Arsenal dar as-sina'a Werkstatt, Haus, in dem Waffen hergestellt werden
Artischocke al-harschuf Artischocke
Atlas atlas Seidenstoff
Azur lazaward Lazurstein
Baldachin bagdad Betthimmel
Berberitze barbaris Sauerdorn
Bohnenkaffe bunn Kaffee. Aus der Beere des Kaffeestocks, die arab. bunn heisst. Daher "Bohnenkaffee"
Borretsch abu 'araq Vater des Schweisses
Chemie al-kimiya Chemie. Das arabische Wort wiederum stammt vom koptischen kemi ab. Dies bezeichnete das Land Ägypten mit bezugnahme auf sein schwarzes Erdreich, dann aber auch das Schwarze im Auge, das Symbol des Dunklen und Verborgenen. Chemie ist also ursprünglich die geheime Wissenschaft.
Chiffon schiff durchsichtiger Stoff
Chiffre schifr Ziffer, Geheimzeichen
Damast dimaschq Damaskus
Diwan diwan Amtszimmer, vom arabischen dawana: niederschreiben
Ebenholz abanus Ebenholz, dunkles Holz
Elixier al-iksir Quintessenz, Stein der Weisen
Estragon tarhun Estragon
Fanfare farfar geschwätzig
Gala hila Ehrengewand, das morgenländische Herrscher ihren Günstlingen schenkten
Gamasche gadamasiy Leder aus Ghadames
Gaze qazz Rohseide
Gazelle gazalun Gazelle
Giraffe zarafa Giraffe
Gitarre qitara Zupfinstrument
Hasard az-zahr Spielwürfel
Haschisch haschisch Gras
Havarie 'awar Schaden
Ingwer zanschibil Ingwer
Intarsie tarsi Einlegearbeit
Jasmin jasamin Jasmin
Joppe schubba baumwollenes Unterkleid
Kabel habl Seil
Kadi qadi Richter
Kaffee qahwa Kaffee
Kaliber qalib Schusterleisten
Kamel schamal Kamel
Kampfer kafur Kampferbaum
Kandare kandara Sitzstange der falken
Kandiszucker qand Rohrzucker
Kapern kabbar Kapernstrauch
Karaffe garrafa Schhöpfgerät
Karat qirat kleines Gewicht
Karmesin qirmiz Schildlaus
Kattun, Baumwolle qutn Baumwolle
Kismet qisma Schicksal
Koffer quffa Flechtkorb
Kümmel kammun Kümmel
Kuppel qubba Kuppel, auch kleines Nebenzimmer, Wölbung über einem Raum
Kurkuma kurkum Safran
Lack lakk Lack
Landauer al-andul Wagen
Laute al-'ud Holzinstrument
Lava laba Boden mit Schlamm
Lila lilak Flieder
Limone laimun Zitrone
Magazin mahzan Speicher
Makramee miqram besteckter schleier
Maske mashara Possenreisserei
massieren massa berühren, betasten
Matratze matrah Platz, Kissen, Teppich
matt mat er starb
Merino beni merin Name eines Berberstammes. Merinoschafe sind nach dem Berberstamm benannt, bei dem sie hauptsächlich gezüchtet wurden
Mokka moha arabische Hafenstadt Mocha
Monsun mausim Jahreszeit
Mumie mumiya einbalsamierter Leichnam
Musselin mausil lockeres Baumwollgewebe
Mütze mustaqah Mantel mit Kapuze
nafta naft Erdpech
Natron natrun natron
Orange naransch Apfelsine
Papagei babbascha Papagei
Racket raha Handfläche
Rasse ra's Kopf, Ursprung
Razzia gaziya Kriegszug
Reibach ribch Gewinn
Risiko rizq von Gottes Gnade abhängig
Safari safar reise
Safran za'faran safran
Sahara sahra'un Wüste
Sandelholz sandal Sandel
Satin zaituni Seide aus Zaitun
schachmatt asch-scha mata der König ist gestorben
Sirup scharab Trank
Sofa suffa Ruhebank
Sorbet scharbat eisgekühltes Getränke aus Fruchtsaft und Zucker
Spinat isfinasch Spinat
Talisman tilasm Zauberbild
Talkum talq Speckstein
Tamburin tanbur Musikinstrument
Tara tarh Verpackungsgewicht, vom arabischen taraha: wegwerfen
Tarif ta'rifa Bekanntmachung
Tasse tasa Tasse
Watte bitana lose Baumwolle
Zenit samt Scheitelpunkt
Ziffer sifr Null
Zucker sukkar Zucker
• neuartige Schmelzverfahren mit Hilfe von verschieden Säuren (Lösungsverfahren).
• Sie erfanden den Destillierapparat mit dessen Hilfe sie Essig reinigten, Alkohol und das für die Medizin so notwendige destillierte Wasser herstellten.
• Sie kannten den unterschied zwischen Säure und Lauge.
• Sie erkannten, daß beim Oxidieren und Sulfieren von Metallen eine Gewichtszunahme auftrat.
• Sie entwickelten Verfahren wie Evaporieren, Sublimieren, Kristallisieren, Filtrieren, Destillieren,...
Von dieser großartigen Leistung zeugen heute noch zahlreiche Fachausdrücke in der Chemie, wie z.B. "Aldehyd", "Alkale", "Alkohol", "Benzin", "Amalgam", "Droge", "Elixier", "Kali", "Kalium", "Alchemie" und das Wort "Chemie" selbst. Die Araber waren auch die ersten, die die Chemie bewußt in den Dienst der Medizin stellten. So wurden zum Beispiel Anästhetika aus Opium und Haschisch, neue Arzneiformen wie Sirup, Pastillen, Pillen (die vergoldet und versilbert wurden), Pflaster, Salben, Verbände, Puder und vieles mehr entwickelt. Ihr Gesundheitswesen wurde unmittelbar als Vorbild für das Abendland herangezogen.
Wer hätte schon damals gedacht, daß es im 9 Jahrhundert in der arabischen Welt ein Krankenwesen gab, daß seines gleichen suchte und mit heutigen Maßstäben durchaus zu vergleichen ist. Die Medizin zu jener Zeit, war im Morgenland eine blühende Wissenschaft. Die sich weit von der Alchemie und ihren mystischen Elementen und Deutungen abhob. Sie war eine nüchterne Wissenschaft, die sich auf methodisch geführte Experimente und auf nachvollziehbare empirische Erkenntnisse stützte.
Ihre Behandlungsmethoden, ihren hohen Stand der Hygiene und ihr Soziales System waren beispielgebend. Die Krankenhäuser standen dem ganzen Volke zur Verfügung den Herrschern wie den Dienern, den Soldaten wie dem Emir, den Freien wie den Sklaven, für Frauen und Männer. War man Krank, begab man sich, ganz selbstverständlich, in das nächstliegende Krankenhaus. In Cordoba allein, gab es im 10 Jahrhundert etwa 50 Krankenhäuser, mit den verschiedensten Fachabteilungen wie Gynäkologie, Chirurgie, Orthopädie, .. . Ihre Lage, wurde nach hygienischen Gesichtspunkten ausgewählt. Baute man ein neues Krankenhaus so wurden zuvor Fleischstücke, von gleichaltrigen und gleichzeitig geschlachteten Hammeln, 24 Stunden lang, an aussichtsreichen Plätzen in der Stadt verteilt, aufgehängt. Nach Ablauf der Zeit, wurden dann alle Fleischstücke, auf ihren Verwesungsgrad überprüft. Der Ort, mit dem am besten erhaltenen Fleischstück, wurde nun für den Bau des Krankenhaus bestimmt.
Jeder Besucher des Krankenhauses, wurde zuerst von den Assistenzärzten und den Studenten, auf den Gesundheitszustand untersucht. Wer keinen Krankenhausaufenthalt benötigte wurde mit einem Rezept in die Krankenhausapotheke geschickt. War ein Krankenhausaufenthalt vonnöten, wurde der Patient in die Patientenkartei aufgenommen und an den Oberarzt überwiesen. Er erhielt gratis Unterkunft, Verpflegung, Arznei, Kleidung und Geld für einen Monat nach der Entlassung. Jedes Zimmer hatte fließendes Wasser und wurde in kalten Nächten beheizt. Sodann hielt der Chefarzt jeden Morgen die Visite mit seinen Studenten und den Assistenzärzten ab. Das Krankenhaus war Heil- und Lehrstätte zugleich, um Studenten eine praxisnahe Ausbildung zu ermöglichen. Am Schluß dieser Ausbildung muß die Studenten dann, ein praktische wie theoretische Prüfung ablegen. Die Regierung setzte eigens hierfür eine Ärztekammer ein die als oberste Instanz, um Kunstfehler zu vermeiden, in Kraft trat.
Diese Verhältnisse, wie sie in jeder größeren arabischen Stadt, in den breiten von Himalaja und den Pyrenäen vor etwa 1000 Jahren, zu finden waren, könnte man ohne weiteres in die heutige Zeit übertragen. Doch bis dieser Zustand im Abendland erreicht wurde vergingen Jahrhunderte. Sie stellten die Chemie als erste in den Dienst der Medizin, sie nahmen Tierexperimente vor um die Wirkung und Verträglichkeit der neu entwickelten Medikamente zu testen, sie entwickelten die Schutzimpfung gegen die schwarzen Pocken, sie entwickelten die schmerzfreie Operation mittels Narkose, sie hatten auch schon, daß heutige, so hochgelobte, Antibiotika entdeckt, sie erkannten, daß die Psychotherapie eine wesentliche Rolle im Genesungsprozeß spielt und nicht zu vergessen, ihre unerreichte Diagnose von Puls und Urin die es ihnen erlaubte, eine Endokarditis, anhand von Puls und Urin, zu diagnostizieren, um nur einige ihrem Forscherdrang entsprungenen Methoden zu nennen. Vieles von dem, wurde vergessen oder aus Glaubensgründen unterdrückt. Doch beeinflußten die Araber maßgeblich das Abendland und schufen ihm die Grundlagen und Anreize für weitere Forschungen.
Mußa ben Schakir lebte zur Zeit Karls des Großen in Bagdad und war Hofastronom und Vertrauter des Kalifen al Mamun. Er, der Vertraute und Günstling des Kalifen, entfloh Nacht für Nacht den Fesseln des Hofes, seinen Vorfahren getreu dem Ruf der Wüste folgend, um als räuberischer Sohn der Wüste den uralten Gesetzen der ghaswa (Raubzug) zu huldigen. Seine einzigen Führer waren die Gestirne, die ihm Zeit und Richtung durch die endlose Finsternis der Wüste wiesen. Sie, die auch seinem Volk seit Jahrtausenden als Führer gedient hatten. Er war wie kein anderer auf das Wissen um den Verlauf der Gestirne angewiesen, denn von ihnen hing in großem Maße der Ausgang eines jeden Raubzuges ab.
Aus dieser kleinen, wahren Anekdote erkennt man, wo die Wurzeln der arabischen Wissenschaft zu suchen sind. Wegen des täglichen Kampfes ums Überleben war es enorm wichtig, die zeitlichen Verläufe der Gestirne so genau wie möglich zu kennen, um das Überleben der Familie und des ganzen Volkes zu gewährleisten. Sie,die Araber, machten sich die Dinge der Welt, die sie umgab, nutzbar wie kein anderes Volk zuvor. Dieses Handeln bestimmte und beflügelte ihren geistigen Werdegang in ausgeprägtem Maße. Um sich nun solche Naturereignisse dienstbar zu machen, bedurfte es mehrerer Fähigkeiten: Kenntnis der Gestirne, der Mathematik und der Mechanik, um geeignete Meßinstrumente zu entwickeln.
Mußa, der Astronom, hatte drei Söhne, die zu den größten arabischen Gelehrten gezählt werden. Sie sind Sinnbild für die arabische Geisteswelt, in ihnen spiegeln sich die Fähigkeiten und Begabungen eines ganzen Volkes für die Wissenschaft der Gestirne wieder. Mittels ihres technischen Erfindergeistes entwickelten sie Gerätschaften und Meßinstrumente, durch methodische und exakte Beobachtungen überflügelten sie in vielen Wissensgebieten die Erkenntnisse der Griechen und Babylonier. Mit ihrer Freude am Lösen wissenschaftlicher Probleme, ihrem Tatendrang und Fleiß erschufen sie neue Zweige der Mathematik und gaben so dem Abendland die grundlegenden geistigen Hilfsmittel für weitere Forschungen und dies nicht nur in der Astronomie, sondern auch in der Chemie, Medizin, Physik, ...
Der erste Sohn Mußas, Muhammed ben Mußa, war der bedeutendste. Er war Politiker, Astronom und wie sein Vater Vertrauter des Kalifen. Mit verschiedenen Berechnungen machten sich er und seine Brüder einen Namen als Gelehrte. Ihre Ergebnisse stellten sogar die Berechnungen des Ptolemäus in den Schatten. Muhammed sei, so wurde ihm bescheinigt, ein sehr ausdauernder Denker gewesen. Er verfaßte mehrere Werke über die Astronomie, darunter die erste arabische Abhandlung über den so wichtigen Transversalsatz. Zusammen mit seinen Brüdern schrieb er außerdem ein Buch über die Ermittlung von ebenen und sphärischen Flächen, welches später in der lateinischen Übersetzung "Liber trium fratrum de geometrica" ("Das Buch der drei Brüder") bekannt wurde.
Muhammed hatte sich nicht nur der Mathematik und der Astronomie verschrieben, er beschäftigte sich unter anderem auch mit Philosophie, Meteorologie und Mechanik. Vor allem die Mechanik war aber auch das Steckenpferd seines Bruders Achmed, der es zu wahren Höhenflügen auf diesem Gebiet brachte. Seine Genialität auf diesem Gebiet sucht noch heute ihresgleichen.
Eben dieser zweite Sohn, Achmed ben Mußa, der Mechaniker, war der leidenschaftliche und geniale Tüftler der Familie. Er beschäftigte sich mit den Lehren der "sinnreichen Anordnungen" und der "selbstbeweglichen Instrumente". Sein "Buch von den sinnreichen Anordnungen" fand große Anerkennung und Würdigung unter den Gelehrten jener Zeit.
Ausgestattet mit einer begnadeten Erfinderphantasie entwickelte er zahlreiche komplizierte Geräte für den alltäglichen Gebrauch und raffinierte Spielzeuge, die zur Unterhaltung dienten. Er entwickelte z.B. eine Tränke aus der nur Kleintiere, aber kein Großvieh saufen konnte, Krüge aus denen man bestimmte Flüssigkeitsmengen entnehmen konnte, Gefäße um das spezifische Gewicht von Flüssigkeiten bestimmen zu können, Instrumente, die ein Pfeifsignal ertönen lassen, wenn eine bestimmte Wasserhöhe erreicht ist und verschiedenste Arten von Springbrunnen, deren Strahl ständig wechselnde Figuren hervorbrachte.
Mit Muhammed baute er gemeinsam eine riesige Uhr, die wechselnde Auf- und Untergänge der wichtigsten Sterne und deren Tages- und Jahresläufe anzeigte. Muhammed führte die überaus komplizierten Berechnungen durch, und Achmed übertrug die Ergebnisse auf eine aufs genaueste arbeitende Apparatur. Diese mit Wasserkraft (!) betriebene Apparatur hatte die Form einer Kugel, in der man die einzelnen Sternbilder und die Tierkreiszeichen sehen konnte. Erschien ein Stern am nächtlichen Horizont, so erschien der Stern auch über der Horizontlinie der Apparatur. Verschwand dagegen ein Stern, so sank er auch in der Apparatur unter die Horizontlinie ab.
Über den dritten Sohn Mußas, al-Hassan ben Mußa, ist in der Literatur nur wenig übermittelt. Einzig in der Geometrie begabt, löste er Probleme, die bis dahin von niemandem gelöst wurden. Er verfaßte ein Werk über Kegelschnitte und ist der Erfinder der sogenannten Gärtnerkonstruktion der Ellipse.
Abu Abdullah Muhammad Ibn Battuta, also known as Shams ad - Din, was born at Tangier, Morocco, on the 24th February 1304 C.E. (703 Hijra). He left Tangier on Thursday, 14th June, 1325 C.E. (2nd Rajab 725 A.H.), when he was twenty one years of age. His travels lasted for about thirty years, after which he returned to Fez, Morocco at the court of Sultan Abu 'Inan and dictated accounts of his journeys to Ibn Juzay. These are known as the famous Travels (Rihala) of Ibn Battuta. He died at Fez in 1369 C.E.
Ibn Battuta was the only medieval traveller who is known to have visited the lands of every Muslim ruler of his time. He also travelled in Ceylon (present Sri Lanka), China and Byzantium and South Russia. The mere extent of his travels is estimated at no less than 75,000 miles, a figure which is not likely to have been surpassed before the age of steam.
Travels
In the course of his first journey, Ibn Battuta travelled through Algiers, Tunis, Egypt, Palestine and Syria to Makkah. After visiting Iraq, Shiraz and Mesopotamia he once more returned to perform the Hajj at Makkah and remained there for three years. Then travelling to Jeddah he went to Yemen by sea, visited Aden andset sail for Mombasa, East Africa. After going up to Kulwa he came back to Oman and repeated pilgrimage to Makkah in 1332 C.E. via Hormuz, Siraf, Bahrain and Yamama. Subsequently he set out with the purpose of going to India, but on reaching Jeddah, he appears to have changed his mind (due perhaps to the unavailability of a ship bound for India), and revisited Cairo, Palestine and Syria, thereafter arriving at Aleya (Asia Minor) by sea and travelled across Anatolia and Sinope. He then crossed the Black Sea and after long wanderings he reached Constantinople through Southern Ukraine.
On his return, he visited Khurasan through Khawarism (Khiva) and having visited all the important cities such as Bukhara, Balkh, Herat, Tus, Mashhad and Nishapur, he crossed the Hindukush mountains via the 13,000 ft Khawak Pass into Afghanistan and passing through Ghani and Kabul entered India. After visiting Lahri (near modern Karachi), Sukkur, Multan, Sirsa and Hansi, he reached Delhi. For several years Ibn Battuta enjoyed the patronage of Sultan Mohammad Tughlaq, and was later sent as Sultan's envoy to China. Passing through Cental India and Malwa he took ship from Kambay for Goa, and after visiting many thriving ports along the Malabar coast he reached the Maldive Islands, from which he crossed to Ceylon. Continuing his journey, he landed on the Ma'bar (Coromandal) coast and once more returning to the Maldives he finally set sail for Bengal and visited Kamrup, Sylhet and Sonargaon (near Dhaka). Sailing along the Arakan coast he came to Sumatra and later landed at Canton via Malaya and Cambodia. In China he travelled northward to Peking through Hangchow. Retracing his steps he returned to Calicut and taking ship came to Dhafari and Muscat, and passing through Paris (Iran), Iraq, Syria, Palestine and Egypt made his seventh and last pilgrimage to Makkah in November 1348 C.E. and then returned to his home town of Fez. His travels did not end here - he later visited Muslim Spain and the lands of the Niger across the Sahara.
On his return to Fez, Ibn Battuta dictated the accounts ofhis travels to Ibn Juzay al-Kalbi (1321-1356 C.E.) at the court of Sultan Abu Inan (1348-1358 C.E). Ibn Juzay took three months to accomplish this work ,which he finished on 9th December 1355 C.E.
Ibn Sina was born in 980 C.E. in the village of Afshana near Bukhara which today is located in the far south of Russia. His father, Abdullah, an adherent of the Ismaili sect, was from Balkh and his mother from a village near Bukhara. In any age Ibn Sina, known in the West as Avicenna, would have been a giant among giants. He displayed exceptional intellectual prowess as a child and at the age of ten was already proficient in the Qur'an and the Arabic classics. During the next six years he devoted himself to Muslim Jurisprudence, Philosophy and Natural Science and studied Logic, Euclid, and the Almeagest.
He turned his attention to Medicine at the age of 17 years and found it, in his own words, "not difficult". However he was greatly troubled by metaphysical problems and in particular the works of Aristotle. By chance, he obtained a manual on this subject by the celebrated philosopher al-Farabi which solved his difficulties.
By the age of 18 he had built up a reputation as a physician and was summoned to attend the Samani ruler Nuh ibn Mansur (reigned 976-997 C.E.), who, in gratitude for Ibn Sina's services, allowed him to make free use of the royal library, which contained many rare and even unique books. Endowed with great powers of absorbing and retaining knowledge, this Muslim scholar devoured the contents of the library and at the age of 21 was in a position to compose his first book.
At about the same time he lost his father and soon afterwards left Bukhara and wandered westwards. He entered the services of Ali ibn Ma'mun, the ruler of Khiva, for a while, but ultimately fled to avoid being kidnapped by the Sultan Mahmud of Ghazna. After many wanderings he came to Jurjan, near the Caspian Sea, attracted by the fame of its ruler, Qabus, as a patron of learning. Unfortunately Ibn Sina's arrival almost coincided with the deposition and murder of this ruler. At Jurjan, Ibn Sina lectured on logic and astronomy and wrote the first part of the Qanun, his greatest work.
He then moved to Ray, near modern Teheran and established a busy medical practice. When Ray was besieged, Ibn Sina fled to Hamadan where he cured Amir Shamsud-Dawala of colic and was made Prime Minister. A mutiny of soldiers against him caused his dismissal and imprisonment, but subsequently the Amir, being again attacked by the colic, summoned him back, apologised and reinstated him! His life at this time was very strenuous: during the day he was busy with the Amir's services, while a great deal of the night was passed in lecturing and dictating notes for his books. Students would gather in his home and read parts of his two great books, the Shifa and the Qanun, already composed. Following the death of the Amir, Ibn Sina fled to Isfahan after a few brushes with the law, including a period in prison. He spent his final years in the services of the ruler of the city, Ala al-Daula whom he advised on scientific and literary matters and accompanied on military campaigns.
Friends advised him to slow down and take life in moderation, but this was not in character. "I prefer a short life with width to a narrow one with length", he would reply. Worn out by hard work and hard living, Ibn Sina died in 1036/1 at a comparatively early age of 58 years. He was buried in Hamadan where his grave is still shown.
Al-Qifti states that Ibn Sina completed 21 major and 24 minor works on philosophy, medicine, theology, geometry, astronomy and the like. Another source (Brockelmann) attributes 99 books to Ibn Sina comprising 16 on medicine, 68 on theology and metaphysics 11 on astronomy and four on verse. Most of these were in Arabic; but in his native Persian he wrote a large manual on philosophical science entitled Danish-naama-i-Alai and a small treatise on the pulse.
His most celebrated Arabic poem describes the descent of Soul into the Body from the Higher Sphere. Among his scientific works, the leading two are the Kitab al-Shifa (Book of Healing), a philosophical encyclopaedia based upon Aristotelian traditions and the al-Qanun al-Tibb which represents the final categorisation of Greco-Arabian thoughts on Medicine.
Of Ibn Sina's 16 medical works, eight are versified treatises on such matter as the 25 signs indicating the fatal termination of illnesses, hygienic precepts, proved remedies, anatomical memoranda etc. Amongst his prose works, after the great Qanun, the treatise on cardiac drugs, of which the British Museum possesses several fine manuscripts, is probably the most important, but it remains unpublished.
The Qanun is, of course, by far the largest, most famous and most important of Ibn Sina's works. The work contains about one million words and like most Arabic books, is elaborately divided and subdivided. The main division is into five books, of which the first deals with general principles; the second with simple drugs arranged alphabetically; the third with diseases of particular organs and members of the body from the head to the foot; the fourth with diseases which though local in their inception spread to other parts of the body, such as fevers and the fifth with compound medicines.
The Qanun distinguishes mediastinitis from pleurisy and recognises the contagious nature of phthisis (tuberculosis of the lung) and the spread of disease by water and soil. It gives a scientific diagnosis of ankylostomiasis and attributes the condition to an intestinal worm. The Qanun points out the importance of dietetics, the influence of climate and environment on health and the surgical use of oral anaesthetics. Ibn Sina advised surgeons to treat cancer in its earliest stages, ensuring the removal of all the diseased tissue. The Qanun's materia medica considers some 760 drugs, with comments on their application and effectiveness. He recommended the testing of a new drug on animals and humans prior to general use.
Ibn Sina noted the close relationship between emotions and the physical condition and felt that music had a definite physical and psychological effect on patients. Of the many psychological disorders that he described in the Qanun, one is of unusual interest: love sickness! ibn Sina is reputed to have diagnosed this condition in a Prince in Jurjan who lay sick and whose malady had baffled local doctors. Ibn Sina noted a fluttering in the Prince's pulse when the address and name of his beloved were mentioned. The great doctor had a simple remedy: unite the sufferer with the beloved.
The Arabic text of the Qanun was published in Rome in 1593 and was therefore one of the earliest Arabic books to see print. It was translated into Latin by Gerard of Cremona in the 12th century. This 'Canon', with its encyclopaedic content, its systematic arrangement and philosophical plan, soon worked its way into a position of pre-eminence in the medical literature of the age displacing the works of Galen, al-Razi and al-Majusi, and becoming the text book for medical education in the schools of Europe. In the last 30 years of the 15th century it passed through 15 Latin editions and one Hebrew. In recent years, a partial translation into English was made. From the 12th-17th century, the Qanun served as the chief guide to Medical Science in the West and is said to have influenced Leonardo da Vinci. In the words of Dr. William Osler, the Qanun has remained "a medical bible for a longer time than any other work".
Despite such glorious tributes to his work, Ibn Sina is rarely remembered in the West today and his fundamental contributions to Medicine and the European reawakening goes largely unrecognised. However, in the museum at Bukhara, there are displays showing many of his writings, surgical instruments from the period and paintings of patients undergoing treatment. An impressive monument to the life and works of the man who became known as the 'doctor of doctors' still stands outside Bukhara museum and his portrait hangs in the Hall of the Faculty of Medicine in the University of Paris. (Dr. Monzur Ahmed)
Almost a thousand years ago at a time when Spain (Andulesia) was part of the Islamic empire, there lived near the capital city of Cordoba one of the great, but now largely forgotten, pioneers of surgery. He was known as El Zahrawi, though in European languages his name is written in over a dozen different ways: Abulcases, Albucasis, Bulcasis, Bulcasim, Bulcari, Alzahawi, Ezzahrawi, Zahravius, Alcarani, Alsarani, Aicaravi, Alcaravius, Alsahrawi etc. El Zahrawi is believed to have been born in the city of El-Zahra, six miles northwest of Cordoba, sometime between 936 and 940. It was here that he lived, studied, taught and practised medicine and surgery until shortly before his death in about 1013, two years after the sacking of El-Zahra.
Because El-Zahra was pillaged and destroyed, little is known about its illustrious son El Zahrawi. He was first mentioned by the Andalusian scholar Abu Muhammad bin Hazm (993-1064), who listed him among the great physician- surgeons of Moorish Spain. The first known biography of El Zahrawi, however, appeared in al-Humaydi's Jadhwat al-Muqtabis (On Andalusian Savants), completed six decades after El Zahrawi's death.
It is clear from El Zahrawi's life history and from his writings that he devoted his entire life and genius to the advancement of medicine as a whole and surgery in particular. El Zahrawi wrote a medical encyclopaedia spanning 30 volumes which included sections on surgery, medicine, orthopaedics, ophthalmology, pharmacology, nutrition etc. This book was known as At-Tasrif and contained data that El Zahrawi had accumulated during a career that spanned almost 50 years of training, teaching and practice. He apparently travelled very little but had wide experience in treating accident victims and war casualties.
In At-Tasrif, El Zahrawi expressed his concern about the welfare of his students whom he called "my children". He emphasised the importance of a good doctor patient relationship and took great care to ensure the safety of his patients and win their trust irrespective of their social status. El Zahrawi's clinical methods showed extreme foresight - he promoted the close observation of individual cases in order to establish the most accurate diagnosis and the best possible treatment. He insisted on compliance with ethical norms and warned against dubious practices adopted by some physicians for purposes of material gain. He also cautioned against quacks who claimed surgical skills they did not possess.
At-Tasrif contains many original observations of historical interest. In it, El Zahrawi elaborates on the causes and symptoms of disease and theorises on the upbringing of children and youth and on the care of the aged and convalescent. In the section on pharmacology and therapeutics, he covers areas such as cardiac drugs, emetics, laxatives, cosmetology, dietetics, materia medica, weights and measures and drug substitution.
At-Tasrif was translated into Latin by Gerard of Cremona in the 12th century and alongside Avicenna's Canon, played a major role as a medical text in the universities of Europe from the 12th to the 17th century AD. Two of El Zahrawi's treatises deserve special mention. Firstly his 28th treatise, known in Latin as Liber servitoris de preeparatione medicinarum simplicium, describes chemical preparations, tablet making, filtering of extracts and related pharmaceutical techniques. This treatise was printed in Venice in 1471 by Nicolaus Jensen.
Perhaps the most importance treatise is the one on surgery. This monumental work was the first in Arabic to treat surgery independently and in detail. It included many pictures of surgical instruments, most invented by El Zahrawi himself, and explanations of their use. El Zahrawi was the first medical author to provide illustrations of instruments used in surgery. There are approximately 200 such drawings ranging from a tongue depressor and a tooth extractor to a catheter and an elaborate obstetric device. The variety of operations covered is amazing. In this treatise El Zahrawi discussed cauterisation, bloodletting, midwifery and obstetrics and the treatment of wounds. He described the exposure and division of the temporal artery to relieve certain types of headaches, diversion of urine into the rectum, reduction mammoplasty for excessively large breasts and the extraction of cataracts. He wrote extensively about injuries to bones and joints, even mentioning fractures of the nasal bones and of the vertebrae. In fact 'Kocher's method' for reducing a dislocated shoulder was described in At-Tasrif long before Kocher was born! El Zahrawi outlined the use of caustics in surgery, fully described tonsillectomy, tracheotomy and craniotomy- operations he had performed on a dead foetus. He explained how to use a hook to extract a polyp tiom the nose, how to use a bulb syringe he had invented for giving enemas to children and how to use a metallic bladder syringe and speculum to extract bladder stones.
El Zahrawi was the first to describethe so-called "Walcher position" in obstetrics; the first to depict dental arches, tongue depressors and lead catheters and the first to describe clearly the hereditary circumstances surrounding haemophilia. He also described ligaturing of blood vessels long before Ambroise Pare.
Once At-Tasrif was translated into Latin in the 12th century, El Zahrawi had a tremendous influence on surgery in the West.
The French surgeon Guy de Chauliac in his 'Great Surgery', completed in about 1363, quoted At-Tasrif over 200 times. El Zahrawi was described by Pietro Argallata (died 1423) as "without doubt the chief of all surgeons". Jaques Delechamps (1513-1588), another French surgeon, made extensive use of At-Tasrif in his elaborate commentary, confirming the great prestige of El Zahrawi throughout the Middle Ages and up to the
Abu Ali al-Hussain Ibn Abdallah Ibn Sina was born in 980 C.E. at Afshana near Bukhara. The young Bu Ali received his early education in Bukhara, and by the age of ten had become well versed in the study of the Qur'an and various sciences. He started studying philosophy by reading various Greek, Muslim and other books on this subject and learnt logic and some other subjects from Abu Abdallah Natili, a famous philosopher of the time. While still young, he attained such a degree of expertise in medicine that his renown spread far and wide. At the age of 17, he was fortunate in curing Nooh Ibn Mansoor, the King of Bukhhara, of an illness in which all the well-known physicians had given up hope. On his recovery, the King wished to reward him, but the young physician only desired permission to use his uniquely stocked library.
On his father's death, Bu Ali left Bukhara and travelled to Jurjan where Khawarizm Shah welcomed him. There, he met his famous contemporary Abu Raihan al-Biruni. Later he moved to Ray and then to Hamadan, where he wrote his famous book Al-Qanun fi al-Tibb. Here he treated Shams al-Daulah, the King of Hamadan, for severe colic. From Hamadan, he moved to Isphahan, where he completed many of his monumental writings. Nevertheless, he continued travelling and the excessive mental exertion as well as political turmoil spoilt his health. Finally, he returned to Hamadan where he died in 1037 C.E.
He was the most famous physician, philosopher, encyclopaedist, mathematician and astronomer of his time. His major contribution to medical science was his famous book al-Qanun, known as the "Canon" in the West. The Qanun fi al-Tibb is an immense encyclo- paedia of medicine extending over a million words. It surveyed the entire medical knowledge available from ancient and Muslim sources. Due to its systematic approach, "formal perfection as well as its intrinsic value, the Qanun superseded Razi's Hawi, Ali Ibn Abbas's Maliki, and even the works of Galen, and remained supreme for six centuries". In addition to bringing together the then available knowledge, the book is rich with the author's original eontribution. His important original contribution includes such advances as recognition of the contagious nature of phthisis and tuberculosis; distribution of diseases by water and soil, and interaction between psychology and health. In addition to describing pharmacological methods, the book described 760 drugs and became the most authentic materia medica of the era. He was also the first to describe meningitis and made rich contributions to anatomy, gynaecology and child health.
His philosophical encyclopaedia Kitab al-Shifa was a monu- mental work, embodying a vast field of knowledge from philosophy to science. He classified the entire field as follows: theoretical knowledge: physics, mathematics and metaphysics; and practical knowledge: ethics, economics and politics. His philosophy synthesises Aristotelian tradition, Neoplatonic influences and Muslim theology.
Ibn Sina also contributed to mathematics, physics, music and other fields. He explained the "casting out of nines" and its applica- tion to the verification of squares and cubes. He made several astronomical observations, and devised a contrivance similar to the vernier, to increase the precision of instrumental readings. In physics, his contribution comprised the study of different forms of energy, heat, light and mechanical, and such concepts as force, vacuum and infinity. He made the important observation that if the perception of light is due to the emission of some sort of particles by the luminous source, the speed of light must be finite. He propounded an interconnection between time and motion, and also made investigations on specific gravity and used an air thermo- meter.
In the field of music, his contribution was an improvement over Farabi's work and was far ahead of knowledge prevailing else- where on the subject. Doubling with the fourth and fifth was a 'great' step towards the harmonic system and doubling with the third seems to have also been allowed. Ibn Sina observed that in the series of consonances represented by (n + 1)/n, the ear is unable to distinguish them when n = 45. In the field of chemistry, he did not believe in the possibility of chemical transmutation because, in his opinion, the metals differed in a fundamental sense. These views were radically opposed to those prevailing at the time. His treatise on minerals was one of the "main" sources of geology of the Christian encyclopaedists of the thirteenth century. Besides Shifa his well-known treatises in philosophy are al-Najat and Isharat.
Der Prophet des Islams sagte:
Bewahre Gott und er bewahrt dich.Bewahre Gott und er zeig dir den Weg.(.....)
Der Knüppel für den, der ungehorsam ist.(Altes arabisches Sprichwort)
bin aber schon öfters gebeten worden, ihn mal ganz zu poasten!
Er zeigt eindeutig, um wieviel weiter und entwickelter die Muslime waren!
Da soll nochmal jemand sagen, wir Muslime seien primitive Barbaren!
Der Islam ist nie ein Hindernis für die Weiterentwicklung des Wissens in der Wissenschaft oder in der Kunst gewesen. Besonders vom 8. bis zum 13. Jahrhundert wurden in der islamischen Welt in fast allen Bereichen der Wissenschaft große Fortschritte erzielt. Im Folgenden einige prominente Vertreter:
Religiöse und philosophische Wissenschaften: al-Kindi(Alkindus, 796-866), al-Ghazali (1058-1111), al-Farabi(870-950), Ihn Sina (Avicenna, 980-1037; bekannt auch im Bereich
Medizin), Ihn Ruschd (Averroes; 1126-1198; machte Aristoteles im
Westen bekannt; verfasste Bücher über Physik, Astronomie und
Medizin), Ibn al-Arabi (1164-1240).
Recht: asch-Schafii (767-820), Abu Hanifa (699-767).
Geschichte und Soziologie: Ibn Ishaq (gest. 769), Ibn Khaldun
(1332-1406; berühmt mit seinem Meisterwerk al-Muqaddima).
Erdkunde und Topographie: Ibn Hauqal (um 975), Piri Reis
(berühmt durch seine Weltkarte von 1513). ), al-Battani (Albatenius, 858-929). Unter
dem Kalifen Ma'mun (gest. 830) wurde der Erdumfang mit einer
erstaunlichen Genauigkeit gemessen.
Astronomie: Ibn Ruschd (entdeckte die Sonnenflecken), Umar
Khayyam (ca. 1038-1123
Botanik: ad-Dinawari (gest. 895) (Die botanische Enzyklopädie).
Medizin: Ibn Sina (Buch der medizinischen Gesetze [al-Qanun]),
ar-Razi (Rhazes, 865-925; verfasste über 184 Bücher u.a. in den Bereichen Medizin und Chemie), Ibn an-Nafis (gest. 1288; entdeckte den Blutkreislauf).Zoologie: Dschahiz (gest. 868); verfasste eine große,
weitverbreitete Abhandlung über das Leben der Tiere.
Optik: al-Kindi (Das Buch der Strahlen), Ibn al-Haitham
(Alhazen, 965-1039; verfasste noch viele weitere Werke in
anderen Wissenschaften wie Chemie, Physik und Mathematik).
Chemie: Dschabir Ibn Khayyam (721-815; erster Muslim, der im Bereich der Chemie Grundlagenforschung betrieb).
Mathematik: Khwarizmi (gest. 863; weltberühmter muslimischer Mathematiker und Vater der Algebra), Umar Khayyam (ein hervorragender Algebraiker), al-Biruni (973-1051; Verfasser von 180 Werken in verschiedenen Wissenschaftszweigen wie z.B. Astronomie, Medizin, Soziologie, Geographie), al-Battani (858-929; einer der Begründer der Trigonometrie), Nasireddin at-Tusi (1201-1274; war u.a. Mathematiker, Astronom, Physiker, Philosoph). Wörter wie Algebra, Ziffern usw. sind arabischen Ursprungs.
Deutsch arabischer Ursprung Übersetzung der arabischen Bedeutung
Admiral amir ar-rahl Befehlshaber der Flotte
Albatros al-gattas Seeadler-Art
Alchemie al-kimiya Chemie
Algebra al-gabr Wiederherstellung; Das arabische Wort ist eine Abkürzung von al-gabr wa-l-muqabala, dem Titel eine algebraischen Lehrbuchs von Muhammad ibn Musa, dem Erfinder der Algebra
Alkali al-qaliy Pottasche
Alkazar al-qasr Schloss, Palast
Alkohol al-kuhl Weingeist
Almanach al-minha wörtl.: Das Geschenkte. Kalender, Neujahrsgeschenk.
Amalgam al-gima Akt der körperlichen Vereinigung
Ambra anbar Ambra
Amulett hammala Tragband
Anilin an-nil Indigopflanze
Aprikos al-baquq Pflaume
Arrak 'araq Schweiß, starker Brandwein
Arsenal dar as-sina'a Werkstatt, Haus, in dem Waffen hergestellt werden
Artischocke al-harschuf Artischocke
Atlas atlas Seidenstoff
Azur lazaward Lazurstein
Baldachin bagdad Betthimmel
Berberitze barbaris Sauerdorn
Bohnenkaffe bunn Kaffee. Aus der Beere des Kaffeestocks, die arab. bunn heisst. Daher "Bohnenkaffee"
Borretsch abu 'araq Vater des Schweisses
Chemie al-kimiya Chemie. Das arabische Wort wiederum stammt vom koptischen kemi ab. Dies bezeichnete das Land Ägypten mit bezugnahme auf sein schwarzes Erdreich, dann aber auch das Schwarze im Auge, das Symbol des Dunklen und Verborgenen. Chemie ist also ursprünglich die geheime Wissenschaft.
Chiffon schiff durchsichtiger Stoff
Chiffre schifr Ziffer, Geheimzeichen
Damast dimaschq Damaskus
Diwan diwan Amtszimmer, vom arabischen dawana: niederschreiben
Ebenholz abanus Ebenholz, dunkles Holz
Elixier al-iksir Quintessenz, Stein der Weisen
Estragon tarhun Estragon
Fanfare farfar geschwätzig
Gala hila Ehrengewand, das morgenländische Herrscher ihren Günstlingen schenkten
Gamasche gadamasiy Leder aus Ghadames
Gaze qazz Rohseide
Gazelle gazalun Gazelle
Giraffe zarafa Giraffe
Gitarre qitara Zupfinstrument
Hasard az-zahr Spielwürfel
Haschisch haschisch Gras
Havarie 'awar Schaden
Ingwer zanschibil Ingwer
Intarsie tarsi Einlegearbeit
Jasmin jasamin Jasmin
Joppe schubba baumwollenes Unterkleid
Kabel habl Seil
Kadi qadi Richter
Kaffee qahwa Kaffee
Kaliber qalib Schusterleisten
Kamel schamal Kamel
Kampfer kafur Kampferbaum
Kandare kandara Sitzstange der falken
Kandiszucker qand Rohrzucker
Kapern kabbar Kapernstrauch
Karaffe garrafa Schhöpfgerät
Karat qirat kleines Gewicht
Karmesin qirmiz Schildlaus
Kattun, Baumwolle qutn Baumwolle
Kismet qisma Schicksal
Koffer quffa Flechtkorb
Kümmel kammun Kümmel
Kuppel qubba Kuppel, auch kleines Nebenzimmer, Wölbung über einem Raum
Kurkuma kurkum Safran
Lack lakk Lack
Landauer al-andul Wagen
Laute al-'ud Holzinstrument
Lava laba Boden mit Schlamm
Lila lilak Flieder
Limone laimun Zitrone
Magazin mahzan Speicher
Makramee miqram besteckter schleier
Maske mashara Possenreisserei
massieren massa berühren, betasten
Matratze matrah Platz, Kissen, Teppich
matt mat er starb
Merino beni merin Name eines Berberstammes. Merinoschafe sind nach dem Berberstamm benannt, bei dem sie hauptsächlich gezüchtet wurden
Mokka moha arabische Hafenstadt Mocha
Monsun mausim Jahreszeit
Mumie mumiya einbalsamierter Leichnam
Musselin mausil lockeres Baumwollgewebe
Mütze mustaqah Mantel mit Kapuze
nafta naft Erdpech
Natron natrun natron
Orange naransch Apfelsine
Papagei babbascha Papagei
Racket raha Handfläche
Rasse ra's Kopf, Ursprung
Razzia gaziya Kriegszug
Reibach ribch Gewinn
Risiko rizq von Gottes Gnade abhängig
Safari safar reise
Safran za'faran safran
Sahara sahra'un Wüste
Sandelholz sandal Sandel
Satin zaituni Seide aus Zaitun
schachmatt asch-scha mata der König ist gestorben
Sirup scharab Trank
Sofa suffa Ruhebank
Sorbet scharbat eisgekühltes Getränke aus Fruchtsaft und Zucker
Spinat isfinasch Spinat
Talisman tilasm Zauberbild
Talkum talq Speckstein
Tamburin tanbur Musikinstrument
Tara tarh Verpackungsgewicht, vom arabischen taraha: wegwerfen
Tarif ta'rifa Bekanntmachung
Tasse tasa Tasse
Watte bitana lose Baumwolle
Zenit samt Scheitelpunkt
Ziffer sifr Null
Zucker sukkar Zucker
• neuartige Schmelzverfahren mit Hilfe von verschieden Säuren (Lösungsverfahren).
• Sie erfanden den Destillierapparat mit dessen Hilfe sie Essig reinigten, Alkohol und das für die Medizin so notwendige destillierte Wasser herstellten.
• Sie kannten den unterschied zwischen Säure und Lauge.
• Sie erkannten, daß beim Oxidieren und Sulfieren von Metallen eine Gewichtszunahme auftrat.
• Sie entwickelten Verfahren wie Evaporieren, Sublimieren, Kristallisieren, Filtrieren, Destillieren,...
Von dieser großartigen Leistung zeugen heute noch zahlreiche Fachausdrücke in der Chemie, wie z.B. "Aldehyd", "Alkale", "Alkohol", "Benzin", "Amalgam", "Droge", "Elixier", "Kali", "Kalium", "Alchemie" und das Wort "Chemie" selbst. Die Araber waren auch die ersten, die die Chemie bewußt in den Dienst der Medizin stellten. So wurden zum Beispiel Anästhetika aus Opium und Haschisch, neue Arzneiformen wie Sirup, Pastillen, Pillen (die vergoldet und versilbert wurden), Pflaster, Salben, Verbände, Puder und vieles mehr entwickelt. Ihr Gesundheitswesen wurde unmittelbar als Vorbild für das Abendland herangezogen.
Wer hätte schon damals gedacht, daß es im 9 Jahrhundert in der arabischen Welt ein Krankenwesen gab, daß seines gleichen suchte und mit heutigen Maßstäben durchaus zu vergleichen ist. Die Medizin zu jener Zeit, war im Morgenland eine blühende Wissenschaft. Die sich weit von der Alchemie und ihren mystischen Elementen und Deutungen abhob. Sie war eine nüchterne Wissenschaft, die sich auf methodisch geführte Experimente und auf nachvollziehbare empirische Erkenntnisse stützte.
Ihre Behandlungsmethoden, ihren hohen Stand der Hygiene und ihr Soziales System waren beispielgebend. Die Krankenhäuser standen dem ganzen Volke zur Verfügung den Herrschern wie den Dienern, den Soldaten wie dem Emir, den Freien wie den Sklaven, für Frauen und Männer. War man Krank, begab man sich, ganz selbstverständlich, in das nächstliegende Krankenhaus. In Cordoba allein, gab es im 10 Jahrhundert etwa 50 Krankenhäuser, mit den verschiedensten Fachabteilungen wie Gynäkologie, Chirurgie, Orthopädie, .. . Ihre Lage, wurde nach hygienischen Gesichtspunkten ausgewählt. Baute man ein neues Krankenhaus so wurden zuvor Fleischstücke, von gleichaltrigen und gleichzeitig geschlachteten Hammeln, 24 Stunden lang, an aussichtsreichen Plätzen in der Stadt verteilt, aufgehängt. Nach Ablauf der Zeit, wurden dann alle Fleischstücke, auf ihren Verwesungsgrad überprüft. Der Ort, mit dem am besten erhaltenen Fleischstück, wurde nun für den Bau des Krankenhaus bestimmt.
Jeder Besucher des Krankenhauses, wurde zuerst von den Assistenzärzten und den Studenten, auf den Gesundheitszustand untersucht. Wer keinen Krankenhausaufenthalt benötigte wurde mit einem Rezept in die Krankenhausapotheke geschickt. War ein Krankenhausaufenthalt vonnöten, wurde der Patient in die Patientenkartei aufgenommen und an den Oberarzt überwiesen. Er erhielt gratis Unterkunft, Verpflegung, Arznei, Kleidung und Geld für einen Monat nach der Entlassung. Jedes Zimmer hatte fließendes Wasser und wurde in kalten Nächten beheizt. Sodann hielt der Chefarzt jeden Morgen die Visite mit seinen Studenten und den Assistenzärzten ab. Das Krankenhaus war Heil- und Lehrstätte zugleich, um Studenten eine praxisnahe Ausbildung zu ermöglichen. Am Schluß dieser Ausbildung muß die Studenten dann, ein praktische wie theoretische Prüfung ablegen. Die Regierung setzte eigens hierfür eine Ärztekammer ein die als oberste Instanz, um Kunstfehler zu vermeiden, in Kraft trat.
Diese Verhältnisse, wie sie in jeder größeren arabischen Stadt, in den breiten von Himalaja und den Pyrenäen vor etwa 1000 Jahren, zu finden waren, könnte man ohne weiteres in die heutige Zeit übertragen. Doch bis dieser Zustand im Abendland erreicht wurde vergingen Jahrhunderte. Sie stellten die Chemie als erste in den Dienst der Medizin, sie nahmen Tierexperimente vor um die Wirkung und Verträglichkeit der neu entwickelten Medikamente zu testen, sie entwickelten die Schutzimpfung gegen die schwarzen Pocken, sie entwickelten die schmerzfreie Operation mittels Narkose, sie hatten auch schon, daß heutige, so hochgelobte, Antibiotika entdeckt, sie erkannten, daß die Psychotherapie eine wesentliche Rolle im Genesungsprozeß spielt und nicht zu vergessen, ihre unerreichte Diagnose von Puls und Urin die es ihnen erlaubte, eine Endokarditis, anhand von Puls und Urin, zu diagnostizieren, um nur einige ihrem Forscherdrang entsprungenen Methoden zu nennen. Vieles von dem, wurde vergessen oder aus Glaubensgründen unterdrückt. Doch beeinflußten die Araber maßgeblich das Abendland und schufen ihm die Grundlagen und Anreize für weitere Forschungen.
Mußa ben Schakir lebte zur Zeit Karls des Großen in Bagdad und war Hofastronom und Vertrauter des Kalifen al Mamun. Er, der Vertraute und Günstling des Kalifen, entfloh Nacht für Nacht den Fesseln des Hofes, seinen Vorfahren getreu dem Ruf der Wüste folgend, um als räuberischer Sohn der Wüste den uralten Gesetzen der ghaswa (Raubzug) zu huldigen. Seine einzigen Führer waren die Gestirne, die ihm Zeit und Richtung durch die endlose Finsternis der Wüste wiesen. Sie, die auch seinem Volk seit Jahrtausenden als Führer gedient hatten. Er war wie kein anderer auf das Wissen um den Verlauf der Gestirne angewiesen, denn von ihnen hing in großem Maße der Ausgang eines jeden Raubzuges ab.
Aus dieser kleinen, wahren Anekdote erkennt man, wo die Wurzeln der arabischen Wissenschaft zu suchen sind. Wegen des täglichen Kampfes ums Überleben war es enorm wichtig, die zeitlichen Verläufe der Gestirne so genau wie möglich zu kennen, um das Überleben der Familie und des ganzen Volkes zu gewährleisten. Sie,die Araber, machten sich die Dinge der Welt, die sie umgab, nutzbar wie kein anderes Volk zuvor. Dieses Handeln bestimmte und beflügelte ihren geistigen Werdegang in ausgeprägtem Maße. Um sich nun solche Naturereignisse dienstbar zu machen, bedurfte es mehrerer Fähigkeiten: Kenntnis der Gestirne, der Mathematik und der Mechanik, um geeignete Meßinstrumente zu entwickeln.
Mußa, der Astronom, hatte drei Söhne, die zu den größten arabischen Gelehrten gezählt werden. Sie sind Sinnbild für die arabische Geisteswelt, in ihnen spiegeln sich die Fähigkeiten und Begabungen eines ganzen Volkes für die Wissenschaft der Gestirne wieder. Mittels ihres technischen Erfindergeistes entwickelten sie Gerätschaften und Meßinstrumente, durch methodische und exakte Beobachtungen überflügelten sie in vielen Wissensgebieten die Erkenntnisse der Griechen und Babylonier. Mit ihrer Freude am Lösen wissenschaftlicher Probleme, ihrem Tatendrang und Fleiß erschufen sie neue Zweige der Mathematik und gaben so dem Abendland die grundlegenden geistigen Hilfsmittel für weitere Forschungen und dies nicht nur in der Astronomie, sondern auch in der Chemie, Medizin, Physik, ...
Der erste Sohn Mußas, Muhammed ben Mußa, war der bedeutendste. Er war Politiker, Astronom und wie sein Vater Vertrauter des Kalifen. Mit verschiedenen Berechnungen machten sich er und seine Brüder einen Namen als Gelehrte. Ihre Ergebnisse stellten sogar die Berechnungen des Ptolemäus in den Schatten. Muhammed sei, so wurde ihm bescheinigt, ein sehr ausdauernder Denker gewesen. Er verfaßte mehrere Werke über die Astronomie, darunter die erste arabische Abhandlung über den so wichtigen Transversalsatz. Zusammen mit seinen Brüdern schrieb er außerdem ein Buch über die Ermittlung von ebenen und sphärischen Flächen, welches später in der lateinischen Übersetzung "Liber trium fratrum de geometrica" ("Das Buch der drei Brüder") bekannt wurde.
Muhammed hatte sich nicht nur der Mathematik und der Astronomie verschrieben, er beschäftigte sich unter anderem auch mit Philosophie, Meteorologie und Mechanik. Vor allem die Mechanik war aber auch das Steckenpferd seines Bruders Achmed, der es zu wahren Höhenflügen auf diesem Gebiet brachte. Seine Genialität auf diesem Gebiet sucht noch heute ihresgleichen.
Eben dieser zweite Sohn, Achmed ben Mußa, der Mechaniker, war der leidenschaftliche und geniale Tüftler der Familie. Er beschäftigte sich mit den Lehren der "sinnreichen Anordnungen" und der "selbstbeweglichen Instrumente". Sein "Buch von den sinnreichen Anordnungen" fand große Anerkennung und Würdigung unter den Gelehrten jener Zeit.
Ausgestattet mit einer begnadeten Erfinderphantasie entwickelte er zahlreiche komplizierte Geräte für den alltäglichen Gebrauch und raffinierte Spielzeuge, die zur Unterhaltung dienten. Er entwickelte z.B. eine Tränke aus der nur Kleintiere, aber kein Großvieh saufen konnte, Krüge aus denen man bestimmte Flüssigkeitsmengen entnehmen konnte, Gefäße um das spezifische Gewicht von Flüssigkeiten bestimmen zu können, Instrumente, die ein Pfeifsignal ertönen lassen, wenn eine bestimmte Wasserhöhe erreicht ist und verschiedenste Arten von Springbrunnen, deren Strahl ständig wechselnde Figuren hervorbrachte.
Mit Muhammed baute er gemeinsam eine riesige Uhr, die wechselnde Auf- und Untergänge der wichtigsten Sterne und deren Tages- und Jahresläufe anzeigte. Muhammed führte die überaus komplizierten Berechnungen durch, und Achmed übertrug die Ergebnisse auf eine aufs genaueste arbeitende Apparatur. Diese mit Wasserkraft (!) betriebene Apparatur hatte die Form einer Kugel, in der man die einzelnen Sternbilder und die Tierkreiszeichen sehen konnte. Erschien ein Stern am nächtlichen Horizont, so erschien der Stern auch über der Horizontlinie der Apparatur. Verschwand dagegen ein Stern, so sank er auch in der Apparatur unter die Horizontlinie ab.
Über den dritten Sohn Mußas, al-Hassan ben Mußa, ist in der Literatur nur wenig übermittelt. Einzig in der Geometrie begabt, löste er Probleme, die bis dahin von niemandem gelöst wurden. Er verfaßte ein Werk über Kegelschnitte und ist der Erfinder der sogenannten Gärtnerkonstruktion der Ellipse.
Abu Abdullah Muhammad Ibn Battuta, also known as Shams ad - Din, was born at Tangier, Morocco, on the 24th February 1304 C.E. (703 Hijra). He left Tangier on Thursday, 14th June, 1325 C.E. (2nd Rajab 725 A.H.), when he was twenty one years of age. His travels lasted for about thirty years, after which he returned to Fez, Morocco at the court of Sultan Abu 'Inan and dictated accounts of his journeys to Ibn Juzay. These are known as the famous Travels (Rihala) of Ibn Battuta. He died at Fez in 1369 C.E.
Ibn Battuta was the only medieval traveller who is known to have visited the lands of every Muslim ruler of his time. He also travelled in Ceylon (present Sri Lanka), China and Byzantium and South Russia. The mere extent of his travels is estimated at no less than 75,000 miles, a figure which is not likely to have been surpassed before the age of steam.
Travels
In the course of his first journey, Ibn Battuta travelled through Algiers, Tunis, Egypt, Palestine and Syria to Makkah. After visiting Iraq, Shiraz and Mesopotamia he once more returned to perform the Hajj at Makkah and remained there for three years. Then travelling to Jeddah he went to Yemen by sea, visited Aden andset sail for Mombasa, East Africa. After going up to Kulwa he came back to Oman and repeated pilgrimage to Makkah in 1332 C.E. via Hormuz, Siraf, Bahrain and Yamama. Subsequently he set out with the purpose of going to India, but on reaching Jeddah, he appears to have changed his mind (due perhaps to the unavailability of a ship bound for India), and revisited Cairo, Palestine and Syria, thereafter arriving at Aleya (Asia Minor) by sea and travelled across Anatolia and Sinope. He then crossed the Black Sea and after long wanderings he reached Constantinople through Southern Ukraine.
On his return, he visited Khurasan through Khawarism (Khiva) and having visited all the important cities such as Bukhara, Balkh, Herat, Tus, Mashhad and Nishapur, he crossed the Hindukush mountains via the 13,000 ft Khawak Pass into Afghanistan and passing through Ghani and Kabul entered India. After visiting Lahri (near modern Karachi), Sukkur, Multan, Sirsa and Hansi, he reached Delhi. For several years Ibn Battuta enjoyed the patronage of Sultan Mohammad Tughlaq, and was later sent as Sultan's envoy to China. Passing through Cental India and Malwa he took ship from Kambay for Goa, and after visiting many thriving ports along the Malabar coast he reached the Maldive Islands, from which he crossed to Ceylon. Continuing his journey, he landed on the Ma'bar (Coromandal) coast and once more returning to the Maldives he finally set sail for Bengal and visited Kamrup, Sylhet and Sonargaon (near Dhaka). Sailing along the Arakan coast he came to Sumatra and later landed at Canton via Malaya and Cambodia. In China he travelled northward to Peking through Hangchow. Retracing his steps he returned to Calicut and taking ship came to Dhafari and Muscat, and passing through Paris (Iran), Iraq, Syria, Palestine and Egypt made his seventh and last pilgrimage to Makkah in November 1348 C.E. and then returned to his home town of Fez. His travels did not end here - he later visited Muslim Spain and the lands of the Niger across the Sahara.
On his return to Fez, Ibn Battuta dictated the accounts ofhis travels to Ibn Juzay al-Kalbi (1321-1356 C.E.) at the court of Sultan Abu Inan (1348-1358 C.E). Ibn Juzay took three months to accomplish this work ,which he finished on 9th December 1355 C.E.
Ibn Sina was born in 980 C.E. in the village of Afshana near Bukhara which today is located in the far south of Russia. His father, Abdullah, an adherent of the Ismaili sect, was from Balkh and his mother from a village near Bukhara. In any age Ibn Sina, known in the West as Avicenna, would have been a giant among giants. He displayed exceptional intellectual prowess as a child and at the age of ten was already proficient in the Qur'an and the Arabic classics. During the next six years he devoted himself to Muslim Jurisprudence, Philosophy and Natural Science and studied Logic, Euclid, and the Almeagest.
He turned his attention to Medicine at the age of 17 years and found it, in his own words, "not difficult". However he was greatly troubled by metaphysical problems and in particular the works of Aristotle. By chance, he obtained a manual on this subject by the celebrated philosopher al-Farabi which solved his difficulties.
By the age of 18 he had built up a reputation as a physician and was summoned to attend the Samani ruler Nuh ibn Mansur (reigned 976-997 C.E.), who, in gratitude for Ibn Sina's services, allowed him to make free use of the royal library, which contained many rare and even unique books. Endowed with great powers of absorbing and retaining knowledge, this Muslim scholar devoured the contents of the library and at the age of 21 was in a position to compose his first book.
At about the same time he lost his father and soon afterwards left Bukhara and wandered westwards. He entered the services of Ali ibn Ma'mun, the ruler of Khiva, for a while, but ultimately fled to avoid being kidnapped by the Sultan Mahmud of Ghazna. After many wanderings he came to Jurjan, near the Caspian Sea, attracted by the fame of its ruler, Qabus, as a patron of learning. Unfortunately Ibn Sina's arrival almost coincided with the deposition and murder of this ruler. At Jurjan, Ibn Sina lectured on logic and astronomy and wrote the first part of the Qanun, his greatest work.
He then moved to Ray, near modern Teheran and established a busy medical practice. When Ray was besieged, Ibn Sina fled to Hamadan where he cured Amir Shamsud-Dawala of colic and was made Prime Minister. A mutiny of soldiers against him caused his dismissal and imprisonment, but subsequently the Amir, being again attacked by the colic, summoned him back, apologised and reinstated him! His life at this time was very strenuous: during the day he was busy with the Amir's services, while a great deal of the night was passed in lecturing and dictating notes for his books. Students would gather in his home and read parts of his two great books, the Shifa and the Qanun, already composed. Following the death of the Amir, Ibn Sina fled to Isfahan after a few brushes with the law, including a period in prison. He spent his final years in the services of the ruler of the city, Ala al-Daula whom he advised on scientific and literary matters and accompanied on military campaigns.
Friends advised him to slow down and take life in moderation, but this was not in character. "I prefer a short life with width to a narrow one with length", he would reply. Worn out by hard work and hard living, Ibn Sina died in 1036/1 at a comparatively early age of 58 years. He was buried in Hamadan where his grave is still shown.
Al-Qifti states that Ibn Sina completed 21 major and 24 minor works on philosophy, medicine, theology, geometry, astronomy and the like. Another source (Brockelmann) attributes 99 books to Ibn Sina comprising 16 on medicine, 68 on theology and metaphysics 11 on astronomy and four on verse. Most of these were in Arabic; but in his native Persian he wrote a large manual on philosophical science entitled Danish-naama-i-Alai and a small treatise on the pulse.
His most celebrated Arabic poem describes the descent of Soul into the Body from the Higher Sphere. Among his scientific works, the leading two are the Kitab al-Shifa (Book of Healing), a philosophical encyclopaedia based upon Aristotelian traditions and the al-Qanun al-Tibb which represents the final categorisation of Greco-Arabian thoughts on Medicine.
Of Ibn Sina's 16 medical works, eight are versified treatises on such matter as the 25 signs indicating the fatal termination of illnesses, hygienic precepts, proved remedies, anatomical memoranda etc. Amongst his prose works, after the great Qanun, the treatise on cardiac drugs, of which the British Museum possesses several fine manuscripts, is probably the most important, but it remains unpublished.
The Qanun is, of course, by far the largest, most famous and most important of Ibn Sina's works. The work contains about one million words and like most Arabic books, is elaborately divided and subdivided. The main division is into five books, of which the first deals with general principles; the second with simple drugs arranged alphabetically; the third with diseases of particular organs and members of the body from the head to the foot; the fourth with diseases which though local in their inception spread to other parts of the body, such as fevers and the fifth with compound medicines.
The Qanun distinguishes mediastinitis from pleurisy and recognises the contagious nature of phthisis (tuberculosis of the lung) and the spread of disease by water and soil. It gives a scientific diagnosis of ankylostomiasis and attributes the condition to an intestinal worm. The Qanun points out the importance of dietetics, the influence of climate and environment on health and the surgical use of oral anaesthetics. Ibn Sina advised surgeons to treat cancer in its earliest stages, ensuring the removal of all the diseased tissue. The Qanun's materia medica considers some 760 drugs, with comments on their application and effectiveness. He recommended the testing of a new drug on animals and humans prior to general use.
Ibn Sina noted the close relationship between emotions and the physical condition and felt that music had a definite physical and psychological effect on patients. Of the many psychological disorders that he described in the Qanun, one is of unusual interest: love sickness! ibn Sina is reputed to have diagnosed this condition in a Prince in Jurjan who lay sick and whose malady had baffled local doctors. Ibn Sina noted a fluttering in the Prince's pulse when the address and name of his beloved were mentioned. The great doctor had a simple remedy: unite the sufferer with the beloved.
The Arabic text of the Qanun was published in Rome in 1593 and was therefore one of the earliest Arabic books to see print. It was translated into Latin by Gerard of Cremona in the 12th century. This 'Canon', with its encyclopaedic content, its systematic arrangement and philosophical plan, soon worked its way into a position of pre-eminence in the medical literature of the age displacing the works of Galen, al-Razi and al-Majusi, and becoming the text book for medical education in the schools of Europe. In the last 30 years of the 15th century it passed through 15 Latin editions and one Hebrew. In recent years, a partial translation into English was made. From the 12th-17th century, the Qanun served as the chief guide to Medical Science in the West and is said to have influenced Leonardo da Vinci. In the words of Dr. William Osler, the Qanun has remained "a medical bible for a longer time than any other work".
Despite such glorious tributes to his work, Ibn Sina is rarely remembered in the West today and his fundamental contributions to Medicine and the European reawakening goes largely unrecognised. However, in the museum at Bukhara, there are displays showing many of his writings, surgical instruments from the period and paintings of patients undergoing treatment. An impressive monument to the life and works of the man who became known as the 'doctor of doctors' still stands outside Bukhara museum and his portrait hangs in the Hall of the Faculty of Medicine in the University of Paris. (Dr. Monzur Ahmed)
Almost a thousand years ago at a time when Spain (Andulesia) was part of the Islamic empire, there lived near the capital city of Cordoba one of the great, but now largely forgotten, pioneers of surgery. He was known as El Zahrawi, though in European languages his name is written in over a dozen different ways: Abulcases, Albucasis, Bulcasis, Bulcasim, Bulcari, Alzahawi, Ezzahrawi, Zahravius, Alcarani, Alsarani, Aicaravi, Alcaravius, Alsahrawi etc. El Zahrawi is believed to have been born in the city of El-Zahra, six miles northwest of Cordoba, sometime between 936 and 940. It was here that he lived, studied, taught and practised medicine and surgery until shortly before his death in about 1013, two years after the sacking of El-Zahra.
Because El-Zahra was pillaged and destroyed, little is known about its illustrious son El Zahrawi. He was first mentioned by the Andalusian scholar Abu Muhammad bin Hazm (993-1064), who listed him among the great physician- surgeons of Moorish Spain. The first known biography of El Zahrawi, however, appeared in al-Humaydi's Jadhwat al-Muqtabis (On Andalusian Savants), completed six decades after El Zahrawi's death.
It is clear from El Zahrawi's life history and from his writings that he devoted his entire life and genius to the advancement of medicine as a whole and surgery in particular. El Zahrawi wrote a medical encyclopaedia spanning 30 volumes which included sections on surgery, medicine, orthopaedics, ophthalmology, pharmacology, nutrition etc. This book was known as At-Tasrif and contained data that El Zahrawi had accumulated during a career that spanned almost 50 years of training, teaching and practice. He apparently travelled very little but had wide experience in treating accident victims and war casualties.
In At-Tasrif, El Zahrawi expressed his concern about the welfare of his students whom he called "my children". He emphasised the importance of a good doctor patient relationship and took great care to ensure the safety of his patients and win their trust irrespective of their social status. El Zahrawi's clinical methods showed extreme foresight - he promoted the close observation of individual cases in order to establish the most accurate diagnosis and the best possible treatment. He insisted on compliance with ethical norms and warned against dubious practices adopted by some physicians for purposes of material gain. He also cautioned against quacks who claimed surgical skills they did not possess.
At-Tasrif contains many original observations of historical interest. In it, El Zahrawi elaborates on the causes and symptoms of disease and theorises on the upbringing of children and youth and on the care of the aged and convalescent. In the section on pharmacology and therapeutics, he covers areas such as cardiac drugs, emetics, laxatives, cosmetology, dietetics, materia medica, weights and measures and drug substitution.
At-Tasrif was translated into Latin by Gerard of Cremona in the 12th century and alongside Avicenna's Canon, played a major role as a medical text in the universities of Europe from the 12th to the 17th century AD. Two of El Zahrawi's treatises deserve special mention. Firstly his 28th treatise, known in Latin as Liber servitoris de preeparatione medicinarum simplicium, describes chemical preparations, tablet making, filtering of extracts and related pharmaceutical techniques. This treatise was printed in Venice in 1471 by Nicolaus Jensen.
Perhaps the most importance treatise is the one on surgery. This monumental work was the first in Arabic to treat surgery independently and in detail. It included many pictures of surgical instruments, most invented by El Zahrawi himself, and explanations of their use. El Zahrawi was the first medical author to provide illustrations of instruments used in surgery. There are approximately 200 such drawings ranging from a tongue depressor and a tooth extractor to a catheter and an elaborate obstetric device. The variety of operations covered is amazing. In this treatise El Zahrawi discussed cauterisation, bloodletting, midwifery and obstetrics and the treatment of wounds. He described the exposure and division of the temporal artery to relieve certain types of headaches, diversion of urine into the rectum, reduction mammoplasty for excessively large breasts and the extraction of cataracts. He wrote extensively about injuries to bones and joints, even mentioning fractures of the nasal bones and of the vertebrae. In fact 'Kocher's method' for reducing a dislocated shoulder was described in At-Tasrif long before Kocher was born! El Zahrawi outlined the use of caustics in surgery, fully described tonsillectomy, tracheotomy and craniotomy- operations he had performed on a dead foetus. He explained how to use a hook to extract a polyp tiom the nose, how to use a bulb syringe he had invented for giving enemas to children and how to use a metallic bladder syringe and speculum to extract bladder stones.
El Zahrawi was the first to describethe so-called "Walcher position" in obstetrics; the first to depict dental arches, tongue depressors and lead catheters and the first to describe clearly the hereditary circumstances surrounding haemophilia. He also described ligaturing of blood vessels long before Ambroise Pare.
Once At-Tasrif was translated into Latin in the 12th century, El Zahrawi had a tremendous influence on surgery in the West.
The French surgeon Guy de Chauliac in his 'Great Surgery', completed in about 1363, quoted At-Tasrif over 200 times. El Zahrawi was described by Pietro Argallata (died 1423) as "without doubt the chief of all surgeons". Jaques Delechamps (1513-1588), another French surgeon, made extensive use of At-Tasrif in his elaborate commentary, confirming the great prestige of El Zahrawi throughout the Middle Ages and up to the
Abu Ali al-Hussain Ibn Abdallah Ibn Sina was born in 980 C.E. at Afshana near Bukhara. The young Bu Ali received his early education in Bukhara, and by the age of ten had become well versed in the study of the Qur'an and various sciences. He started studying philosophy by reading various Greek, Muslim and other books on this subject and learnt logic and some other subjects from Abu Abdallah Natili, a famous philosopher of the time. While still young, he attained such a degree of expertise in medicine that his renown spread far and wide. At the age of 17, he was fortunate in curing Nooh Ibn Mansoor, the King of Bukhhara, of an illness in which all the well-known physicians had given up hope. On his recovery, the King wished to reward him, but the young physician only desired permission to use his uniquely stocked library.
On his father's death, Bu Ali left Bukhara and travelled to Jurjan where Khawarizm Shah welcomed him. There, he met his famous contemporary Abu Raihan al-Biruni. Later he moved to Ray and then to Hamadan, where he wrote his famous book Al-Qanun fi al-Tibb. Here he treated Shams al-Daulah, the King of Hamadan, for severe colic. From Hamadan, he moved to Isphahan, where he completed many of his monumental writings. Nevertheless, he continued travelling and the excessive mental exertion as well as political turmoil spoilt his health. Finally, he returned to Hamadan where he died in 1037 C.E.
He was the most famous physician, philosopher, encyclopaedist, mathematician and astronomer of his time. His major contribution to medical science was his famous book al-Qanun, known as the "Canon" in the West. The Qanun fi al-Tibb is an immense encyclo- paedia of medicine extending over a million words. It surveyed the entire medical knowledge available from ancient and Muslim sources. Due to its systematic approach, "formal perfection as well as its intrinsic value, the Qanun superseded Razi's Hawi, Ali Ibn Abbas's Maliki, and even the works of Galen, and remained supreme for six centuries". In addition to bringing together the then available knowledge, the book is rich with the author's original eontribution. His important original contribution includes such advances as recognition of the contagious nature of phthisis and tuberculosis; distribution of diseases by water and soil, and interaction between psychology and health. In addition to describing pharmacological methods, the book described 760 drugs and became the most authentic materia medica of the era. He was also the first to describe meningitis and made rich contributions to anatomy, gynaecology and child health.
His philosophical encyclopaedia Kitab al-Shifa was a monu- mental work, embodying a vast field of knowledge from philosophy to science. He classified the entire field as follows: theoretical knowledge: physics, mathematics and metaphysics; and practical knowledge: ethics, economics and politics. His philosophy synthesises Aristotelian tradition, Neoplatonic influences and Muslim theology.
Ibn Sina also contributed to mathematics, physics, music and other fields. He explained the "casting out of nines" and its applica- tion to the verification of squares and cubes. He made several astronomical observations, and devised a contrivance similar to the vernier, to increase the precision of instrumental readings. In physics, his contribution comprised the study of different forms of energy, heat, light and mechanical, and such concepts as force, vacuum and infinity. He made the important observation that if the perception of light is due to the emission of some sort of particles by the luminous source, the speed of light must be finite. He propounded an interconnection between time and motion, and also made investigations on specific gravity and used an air thermo- meter.
In the field of music, his contribution was an improvement over Farabi's work and was far ahead of knowledge prevailing else- where on the subject. Doubling with the fourth and fifth was a 'great' step towards the harmonic system and doubling with the third seems to have also been allowed. Ibn Sina observed that in the series of consonances represented by (n + 1)/n, the ear is unable to distinguish them when n = 45. In the field of chemistry, he did not believe in the possibility of chemical transmutation because, in his opinion, the metals differed in a fundamental sense. These views were radically opposed to those prevailing at the time. His treatise on minerals was one of the "main" sources of geology of the Christian encyclopaedists of the thirteenth century. Besides Shifa his well-known treatises in philosophy are al-Najat and Isharat.
Der Prophet des Islams sagte:
Bewahre Gott und er bewahrt dich.Bewahre Gott und er zeig dir den Weg.(.....)
Der Knüppel für den, der ungehorsam ist.(Altes arabisches Sprichwort)