Welche Aussage ist am kompliziertesten?
05.02.2019 um 21:031.Jede Clifford-Algebra ist isomorph zu einer Teil-Algebra einer reellen, komplexen oder quaternionischen Matrix-Algebra. Diese hat eine kanonische Darstellung durch Spaltenvektoren, die Spinoren.
2.Die Multiplikation der Oktonionen kann man in der Fano-Ebene darstellen (siehe Abbildung rechts). Die Punkte entsprechen den sieben Einheits-Oktonionen im Imaginärteil der Oktonionen
3.Mittels der Cayley-Algebren lassen sich exzeptionelle Jordan-Algebren konstruieren und mittels Räumen von Derivationen auf solchen Jordan-Algebren können exzeptionelle Lie-Algebren angegeben werden.
4.Die Multiplikation der Sedenionen ist weder kommutativ noch alternativ (und damit auch nicht assoziativ). Sie ist nur noch potenz-assoziativ und flexibel. Weiterhin erfüllen die Sedenionen die Jordan-Identität und bilden daher eine nichtkommutative Jordan-Algebra. Sedenionen besitzen Nullteiler.
2.Die Multiplikation der Oktonionen kann man in der Fano-Ebene darstellen (siehe Abbildung rechts). Die Punkte entsprechen den sieben Einheits-Oktonionen im Imaginärteil der Oktonionen
3.Mittels der Cayley-Algebren lassen sich exzeptionelle Jordan-Algebren konstruieren und mittels Räumen von Derivationen auf solchen Jordan-Algebren können exzeptionelle Lie-Algebren angegeben werden.
4.Die Multiplikation der Sedenionen ist weder kommutativ noch alternativ (und damit auch nicht assoziativ). Sie ist nur noch potenz-assoziativ und flexibel. Weiterhin erfüllen die Sedenionen die Jordan-Identität und bilden daher eine nichtkommutative Jordan-Algebra. Sedenionen besitzen Nullteiler.