Tetraktys - Simplex und Primzahl
30.07.2014 um 14:19Da ich momentan noch für Prüfungen lerne, kann ich jetzt nicht in aller Ausführlichkeit antworten, zumal es auch noch ein paar Gedanken gibt, die ich erstmal gründlich durchdenken muss, aber einen Gedanken möchte ich doch einmal ausformulieren:
Wir diskutieren also über die Zahl 10 und ihr Auftauchen in verschiedenen geometrischen Betrachtungen.
Nun hast du auch noch das Thema Fraktale angeschnitten und von einem Zusammenhang gesprochen.
Ursprünglich kamen wir aus einer kritischen Diskussion über Radosophie, bei der kritisiert wurde, dass gleiche Ergebnisse durch fadenscheinige arithmetische Konstruktionen zusammengebaut wurden und dann direkt zum Wort "Zusammenhang" gegriffen wurde.
Die Frage, die ich mir momentan stelle ist eben, ob die Zehnen in den Beispielen möglicherweise genauso nur einen scheinbaren Zusammenhang vermuten lassen, den man bei genauerer Betrachtung wieder ausräumen kann oder ob das Wort wirklich konsistent verwendet wird.
Viel Einleitung, ich weis, aber ich möchte für die jetzt folgende Frage das gedankliche Fundament schaffen.
Ich zweifle an der Zusammenhangsvermutung zwischen den Simplexen und den Fraktalen.
Warum?
Bei den Simplexen entstand die 10, indem du die Einzelteile des 10 Simplex betrachtet hattest und jeweils die Innenwinkel an den Eckpunkten zusammengezählt hast und bei einer Summe von 10 Vollkreisen (also 3600 Grad) gelandet bist.
Bei der Betrachtung der Fraktale hast du dir innerhalb der Struktur ein 10 Eck herausgegriffen, in dem sich wiederum 10 Vierecke befanden, deren Innenwinkelsumme wiederum 10 Vollkreise ergab.
Dabei verstehe ich nicht, worin jetzt der Zusammenhang der beiden Strukturen bestehen soll bzw. welchen Zusammenhang die 10 erklären soll?
Wir haben zwei geometrische Objekte, deren Randbegrenzung eine 10-Eck ist. Soweit haben wir eine Übereinstimmung.
Beide Objekte haben in sich jeweils gewisse Symmetrien - auch ein Treffer.
Aber danach finde ich eben keine Erklärung oder Eigenschaft der Objekte, die rechtfertigt, dass die 10 im Simplex etwas mit der 10 im Fraktal zu tun hat.
Schließlich entsteht die 10 im Simplex dadurch, dass man eine ganz konkrete Menge von Winkeln an den Ecken zusammenzählt, während man beim Fraktal eine Teilstruktur zwischen einem Eck- und Mittelpunkt herausgreift.
Aber was erklärt dies nun, außer dass man in einem Objekt, dessen Konstruktionsgrundlage ein 10-Eck war, Teilstrukturen finden kann, deren Innenwinkelsumme wieder 10 Vollkreise ergibt?
In beiden Strukturen finden sich - was nicht überrascht - schließlich noch eine Vielzahl anderer Objektgruppen, die genau diese Eigenschaft haben.
Warum überhaupt betrachtet man bei der Untersuchung der Simplexe nur die Winkel an den Ecken? Und nicht Strukturen innerhalb des ganzen Simplex?
Warum betrachtet man beim Fraktal dagegen die Struktur innerhalb des Objekts und nicht mehr die Winkel an den Eckpunkten?
Damit soll es für den Moment erst einmal an Fragen genügen.
All diese Fragen, sollen helfen den Unterschied (sofern er existiert) herauszukristallieren zwischen einen Zusammenhang(, der also auch glasklar erklären kann, dass und wie die 10en miteinander zusammenhängen und warum es gar nicht anders sein kann) und irgendwelchen Zahlenspielereien, die lediglich die Glorifizierung der 10 weiterhin rechtfertigen.
Und ich weis, dass der letzte Absatz etwas harsch formuliert ist, aber wie schon bei unserem Freund mit den Naturkonstanten so muss ich hier eben auch die Methodik er- und hinterfragen, die zum Fund der Ergebnisse führten und kritischst nachbohren, was angeblich erklärt wird.
Denn wie immer erklärt, brächte es nichts, wenn jetzt immer neue Strukturen herangezogen werden, in denen man irgendwas macht, um wieder die 10 vor sich zu haben und dann allein daraus einen Zusammenhang erklärt oder gefunden haben zu wollen.
Wir diskutieren also über die Zahl 10 und ihr Auftauchen in verschiedenen geometrischen Betrachtungen.
Nun hast du auch noch das Thema Fraktale angeschnitten und von einem Zusammenhang gesprochen.
Ursprünglich kamen wir aus einer kritischen Diskussion über Radosophie, bei der kritisiert wurde, dass gleiche Ergebnisse durch fadenscheinige arithmetische Konstruktionen zusammengebaut wurden und dann direkt zum Wort "Zusammenhang" gegriffen wurde.
Die Frage, die ich mir momentan stelle ist eben, ob die Zehnen in den Beispielen möglicherweise genauso nur einen scheinbaren Zusammenhang vermuten lassen, den man bei genauerer Betrachtung wieder ausräumen kann oder ob das Wort wirklich konsistent verwendet wird.
Viel Einleitung, ich weis, aber ich möchte für die jetzt folgende Frage das gedankliche Fundament schaffen.
Ich zweifle an der Zusammenhangsvermutung zwischen den Simplexen und den Fraktalen.
Warum?
Bei den Simplexen entstand die 10, indem du die Einzelteile des 10 Simplex betrachtet hattest und jeweils die Innenwinkel an den Eckpunkten zusammengezählt hast und bei einer Summe von 10 Vollkreisen (also 3600 Grad) gelandet bist.
Bei der Betrachtung der Fraktale hast du dir innerhalb der Struktur ein 10 Eck herausgegriffen, in dem sich wiederum 10 Vierecke befanden, deren Innenwinkelsumme wiederum 10 Vollkreise ergab.
Dabei verstehe ich nicht, worin jetzt der Zusammenhang der beiden Strukturen bestehen soll bzw. welchen Zusammenhang die 10 erklären soll?
Wir haben zwei geometrische Objekte, deren Randbegrenzung eine 10-Eck ist. Soweit haben wir eine Übereinstimmung.
Beide Objekte haben in sich jeweils gewisse Symmetrien - auch ein Treffer.
Aber danach finde ich eben keine Erklärung oder Eigenschaft der Objekte, die rechtfertigt, dass die 10 im Simplex etwas mit der 10 im Fraktal zu tun hat.
Schließlich entsteht die 10 im Simplex dadurch, dass man eine ganz konkrete Menge von Winkeln an den Ecken zusammenzählt, während man beim Fraktal eine Teilstruktur zwischen einem Eck- und Mittelpunkt herausgreift.
Aber was erklärt dies nun, außer dass man in einem Objekt, dessen Konstruktionsgrundlage ein 10-Eck war, Teilstrukturen finden kann, deren Innenwinkelsumme wieder 10 Vollkreise ergibt?
In beiden Strukturen finden sich - was nicht überrascht - schließlich noch eine Vielzahl anderer Objektgruppen, die genau diese Eigenschaft haben.
Warum überhaupt betrachtet man bei der Untersuchung der Simplexe nur die Winkel an den Ecken? Und nicht Strukturen innerhalb des ganzen Simplex?
Warum betrachtet man beim Fraktal dagegen die Struktur innerhalb des Objekts und nicht mehr die Winkel an den Eckpunkten?
Damit soll es für den Moment erst einmal an Fragen genügen.
All diese Fragen, sollen helfen den Unterschied (sofern er existiert) herauszukristallieren zwischen einen Zusammenhang(, der also auch glasklar erklären kann, dass und wie die 10en miteinander zusammenhängen und warum es gar nicht anders sein kann) und irgendwelchen Zahlenspielereien, die lediglich die Glorifizierung der 10 weiterhin rechtfertigen.
Und ich weis, dass der letzte Absatz etwas harsch formuliert ist, aber wie schon bei unserem Freund mit den Naturkonstanten so muss ich hier eben auch die Methodik er- und hinterfragen, die zum Fund der Ergebnisse führten und kritischst nachbohren, was angeblich erklärt wird.
Denn wie immer erklärt, brächte es nichts, wenn jetzt immer neue Strukturen herangezogen werden, in denen man irgendwas macht, um wieder die 10 vor sich zu haben und dann allein daraus einen Zusammenhang erklärt oder gefunden haben zu wollen.