Alternative Energien - Ökostrom
19.12.2010 um 20:42
Nikolas Tesla, John Bedini, Albert Einstein und viele andere Genies auf dieser Welt wollten die "Freie Energie" für die Menschen, doch die mächtigen Unmenschen dachten und denken nicht daran.
Ich arbeite in dieser Branche der erneuerbaren Energien und recherchiere schon lange über die Energiekonzerne (Lobby) und denke es wird nie wirklich "Freie Energie" geben, ausser Ihr investiert in eine Solaranlage und versorgt euch mit eigener Sonnenenergie.
Es gibt schon lange die hocheffizienten ( 40% ) Solarmodule, jedoch nicht zugänglich für alle, da diese sehr "teuer ???" sind, jedoch für die Raumfahrt schon lange zur verfügung stehen:
GaInP2/GaAs/Ge Modelle Metal Organic Vapor Phase Epitaxy, 26.62cm2 and 59.65cm2 common standard sizes;
Heritage
? More than 2.6 million multi-junction cells delivered
? More than 820 kW of multi-junction arrays on orbit
? Large area cell (59.65cm2) delivered on solar panels for 25
satellites (LEO constellation)
? 1 MW annual capacity - cells and panels
Nikolas Tesla hatte das wissen und den grandiosen Verstand zur "Freien Energie" für alle, doch schon zu seiner Zeit gefiel diese Idee den Unmenschen nicht, ein paar Jahre nach seinem Tod haben diese Unmenschen sein Wissen wieder zusammen gekratzt um das H.A.A.R.P zu starten und wer weiss was sie damit alles anstellen ???!!!
Die Kalte Fusion ist auch eine sehr spannende Geschichte, dijenigen die eine Atombombe oder eine Wasserstoffbombe bauen (berechnen) können, sollten eigentlich den Schlüssel in der Hand halten, jedoch fehlt angeblich das nötige Geld und das Wissen um das zu bewerkstelligen passt wiederum den Wissenschaftlern der Royal Loge nicht:
Fusion Summary
Fusion reactions, also called thermonuclear reactions, are reactions between the nuclei of certain isotopes of light elements. If the nuclei collide with sufficient energy (provided by heat in a star or a bomb, or by a particle accelerator in the laboratory) then there is a significant chance that they will merge to form one or more new nuclei with the release of energy. Different nuclei combinations have different inherent likelihoods of reacting in a collision at a particular temperature. The rates of all fusion reactions is affected by both temperature and density. The hotter and denser the fusion fuel, the faster the fusion "burn".
The fusion reactions that occur in stars are not the same as the ones that occur in thermonuclear weapons or (laboratory fusion reactors). The somewhat complex catalyzed fusion cycle in stars that converts light hydrogen (protium) into helium is extremely slow, which is why the lifetime of the Sun is measured in billions of years. The fusion reactions used in bombs and prospective powerplant designs are simple, and extremely fast - which is essential since the fuel must be fully consumed within microseconds. These reactions thus are based on the same general principles as stellar fusion, but are completely different in detail.
Candidate Fusion Reactions
The most important fusion reactions for thermonuclear weapons are
given below:1. D + T -> He-4 + n + 17.588 MeV
2. D + D -> He-3 + n + 3.268 MeV
3. D + D -> T + p + 4.03 MeV
4. He-3 + D -> He-4 + p + 18.34 MeV
5. Li-6 + n -> T + He-4 + 4.78 MeV
6. Li-7 + n -> T + He-4 + n - 2.47 MeV
[D and T stand for deuteron or deuterium (H-2), and triton or tritium
(H-3) respectively.]
Fission Summary
Nuclear fission occurs when the nuclei of certain isotopes of very heavy elements, isotopes of uranium and plutonium for example, capture neutrons. The nuclei of these isotopes are just barely stable and the addition of a small amount of energy to one by an outside neutron will cause it to promptly split into two roughly equal pieces, with the release of a great deal of energy (180 MeV of immediately available energy) and several new neutrons (an average of 2.52 for U-235, and 2.95 for Pu-239). If on average one neutron from each fission is captured and successfully produces fission then a self-sustaining chain reaction is produced. If on average *more* than one neutron from each fission triggers another fission, then the number of neutrons and the rate of energy production will increase exponentially with time.
Two conditions must be met before fission can be used to create powerful explosions: 1) the number of neutrons lost to fission (from non-fission producing neutron captures, or escape from the fissionable mass) must be kept low, and 2) the speed with which the chain reaction proceeds must be very fast. A fission bomb is in a race with itself: to successfully fission most of the material in the bomb before it blows itself apart. The degree to which a bomb design succeeds in this race determines its efficiency. A poorly designed or malfunctioning bomb may "fizzle" and release only a tiny fraction of its potential energy.
The Nature Of The Fission Process
The nucleus of an atom can interact with a neutron that travels nearby in two basic ways. It can scatter the neutron - deflecting the neutron in a different direction while robbing it of some of its kinetic energy. Or it can capture the neutron, which in turn can affect the nucleus in several ways - absorption and fission being most important here. The probability that a particular nucleus will scatter or capture a neutron is measured by its scattering cross-section and capture cross-section respectively. The overall capture cross-section can be subdivided into other cross-sections - the absorption cross- section and the fission cross-section.
The stability of an atomic nucleus is determined by its binding energy - the amount of energy required to disrupt it. Any time a neutron or proton is captured by an atomic nucleus, the nucleus rearranges its structure. If energy is released by the rearrangement, the binding energy decreases. If energy is absorbed, the binding energy increases.
The isotopes important for the large scale release of energy through fission are uranium-235 (U-235), plutonium-239 (Pu-239), and uranium- 233 (U-233). The binding energy of these three isotopes is so low that when a neutron is captured, the energy released by rearrangement exceeds it. The nucleus is then no longer stable and must either shed the excess energy, or split into two pieces. Since fission occurs regardless of the neutron's kinetic energy (i.e. no extra energy from its motion is needed to disrupt the nucleus), this is called "slow fission".
By contrast, when the abundant isotope uranium-238 captures a neutron it still has a binding energy deficit of 1 MeV after internal rearrangement. If it captures a neutron with a kinetic energy exceeding 1 MeV, then this energy plus the energy released by rearrangement can over come the binding energy and cause fission. Since a fast neutron with a large kinetic energy is required, this is called "fast fission".
The slow fissionable isotopes have high neutron fission cross-sections for neutrons of all energies, while having low cross-sections for absorption. Fast fissionable isotopes have zero fission cross-sections below a certain threshold (1 MeV for U-238), but the cross-sections climb quickly above the threshold. Generally though, slow-fissionable isotopes are more fissionable than fast-fissionable isotopes for neutrons of all energies.
A general trend among the elements is that the ratio of neutrons to protons in an atomic nucleus increases with the element's atomic number (the number of protons the nucleus contains, which determines which element it is). Heavier elements require relatively more neutrons to stabilize the nucleus. When the nucleus of a heavy element like uranium (atomic number 92) is split the fragments, having lower atomic numbers, will tend to have excess neutrons. These neutrons are shed very rapidly by the excited fragments. More neutrons are produced on average than are consumed in fission.
Fission is a statistical process. The nucleus rarely splits into pieces with nearly the same mass and atomic number. Instead both the size and atomic numbers of the fragments have a Gaussian distributions around two means (one for the lighter fragment around 95, one for the heavier around 135). Similarly, the number of neutrons produced varies from zero to six or more, and their kinetic energy varies from 0.5 MeV to more than 4 MeV, the most probable energy is 0.75 MeV, the average (and median) is 2 MeV.
A breakdown of the energy released by fission is given below:
MeV
Kinetic energy of fission fragments 165 +/- 5
Instantaneous gamma rays 7 +/- 1
Kinetic energy of neutrons 5 +/- 0.5
Beta particles from product decay 7 +/- 1
Gamma rays from product decay 6 +/- 1
Neutrinos from product decay 10
TOTAL 200 +/- 6
Dies ist bloss ein kleiner Teil des Wissens, jedoch sehr wichtig um eine Bombe bauen und den ablauf genausten verstehen zu können. Jedoch nicht sehr weit von der Kalten Fusion entfernt.
Freie Energie für alle und die Amis sind am Boden, die Bilderberger, FED Bank, Rothschild Bank und die Waffen Industrie. Jede neue Energiequelle wird wenn möglich als Waffe eingesetzt.
Solange sich die Menschen unterdrücken lassen oder von den Unmenschen - "Lügen" zu stark beeinflussen lassen, wird es nie zur "Freien Energie" kommen. "NO PEACE ON EARTH" ist denen ihr Spruch.
Ich sage: " Diejenigen die zur Musik tantzten, wurden von denjeniegen die die Musik nicht hören konnten, als verrückt erklärt."
Es grüsst feindlich oder freundlich zum nachdenken