@BagiraDie Theorie in ihrer gesamtheit ist alles andere bewiesen.
Wenn sich durch Selektion etwas weiter mutiert... wird sie erst bewiesen. wie oft denn noch.
siehe fibonacci system...
wie sich perfekte spiralen bilden...
___________
quelle-http://de.wikipedia.org/wiki/Fibonacci-Folge
Viele Pflanzen weisen in ihrem Bauplan Spiralen auf, deren Anzahl durch Fibonacci-Zahlen gegeben sind, wie beispielsweise bei den Samen in Blütenständen. Das ist dann der Fall, wenn der Winkel zwischen architektonisch benachbarten Blättern oder Samen bezüglich der Pflanzenachse der Goldene Winkel ist. Hintergrund ist der Umstand, dass die rationalen Zahlen, die den zugrunde liegenden Goldenen Schnitt am besten approximieren, Brüche von aufeinanderfolgenden Fibonacci-Zahlen sind. Die Spiralen werden daher von Pflanzenelementen gebildet, deren Platznummern sich durch die Fibonacci-Zahl im Nenner unterscheiden und damit fast in die gleiche Richtung weisen.
Durch diese spiralförmige Anordnung der Blätter um die Sprossachse erzielt die Pflanze die beste Lichtausbeute. Der Versatz der Blätter um das irrationale Verhältnis des Goldenen Winkels sorgt dafür, dass nie Perioden auftauchen, wie es z. B. bei 1/4 der Fall wäre (0° 90° 180° 270° | 0° 90° …). Dadurch wird der denkbar ungünstigste Fall vermieden, dass ein Blatt genau senkrecht über dem anderen steht und sich so die jeweils übereinanderstehenden Blätter maximalen Schatten machen oder maximale ‚Lichtlücken‘ entstehen. Wissenschaftshistorisch ist hierfür das Buch On Growth and Form von D'Arcy Wentworth Thompson (1917) grundlegend.
Ein weiterer interessanter Aspekt ist, dass die Fibonacci-Folge die Ahnenmenge einer weiblichen Honigbiene (Apis mellifera) beschreibt. Das erklärt sich dadurch, dass Bienendrohnen sich aus unbefruchteten Eiern entwickeln, die in ihrem Genom dem Erbgut der Mutter entsprechen.
das ist alles andere als nicht festgelegt.
__________________________________________________