Wie baut man ein Zeitmaschine ?
03.04.2005 um 16:21Tiplers Bauplan einer Zeitmaschine
Man nehme Materie von mindestens 10 Sonnenmassen und presse sie zu einem extrem dünnen Zylinder zusammen, in etwa so, als würde man ein Schwarzes Loch durch eine Spaghettimaschine quetschen. Diesen versetze man dann in hyperschnelle, relativistische Rotation, und schon hat man eine Zeitmaschine, mit welcher man in die Zukunft und in die Vergangenheit reisen kann.
Der amerikanische Professor für Physik und Mathematik Frank J. Tipler hat bereits 1974 einen Artikel veröffentlicht, in welchem er globale Kausalitätsverletzungen durch einen rotierenden Zylinder beschrieb. Die Allgemeine Relativitätstheorie, so Tipler, lässt es zu, dass ein Teilchen durch die umgebende Raumzeit einer Singularität läuft und dabei zur selben Zeit an seinen Startpunkt wie bei seiner Abreise wieder ankommt. Anders gesagt, es müsste zweimal durch ein Wurmloch laufen und würde so eine zeitartige Schleife bilden. Aber der Weg durch eine Singularität ist nicht ganz ohne Gefahren, realistischer wäre daher die Anfertigung eines kompakten Zylinders. In seiner Umgebung ist die Raumzeit sinusförmig gekrümmt, so dass die Zeit schwingt und nicht mehr geradlinig von der Gegenwart zur Zukunft läuft.
--------------------------------------------------------------------------------
Die Zeit in der Umgebung eines solchen Zylinders wird also schwingen und ein Körper, der sich sehr vorsichtig nähert, ist nicht zwangsläufig den unangenehmen Verformungen unterworfen wie bei einem Höllentrip durch eine Singularität.
Solch ein Zylinder sollte theoretisch unendlich lang sein, was natürlich praktisch unmöglich ist. Das Rezept zur Herstellung einer tatsächlich funktionierenden Zeitmaschine klingt dennoch recht einfach: Man nehme etwa 200 Neutronensterne (es darf gerne auch etwas mehr sein!), deren Materie für unseren Zweck genügend kompakt ist, und ordne sie in einer Reihe an. So ergibt sich ein Zylinder von rund 20 km Durchmesser und mindestens 4000 km Länge. Damit keine unbekannten negativen Einflüsse auf die Milchstraße entstehen, sollte man das Gerät außerhalb der Galaxie aufbauen. Nun muss man "nur" noch die Rotation der Neutronensterne synchronisieren und sie soweit auf Trab bringen, dass sie wenigstens auf halbe Lichtgeschwindigkeit kommt, da sonst die Gefahr besteht, dass der Zylinder kollabiert oder explodiert.
--------------------------------------------------------------------------------
Tipler prognostiziert nun, dass man sich auf einem sehr sorgfältig ausgewähltem spiraligen Kurs der Mitte des Zylinders nähern und in die verschiedenen Zeitzonen eintauchen kann. Je nachdem, wie schnell und wo man in diese Zonen gelangt, kann man beliebig weit in der Zeit vor- und zurückgehen oder sich plötzlich in einer entfernten Galaxie wiederfinden. Um nicht in die chaosartig ineinander verwirbelte Raumzeit zu gelangen, muss man allerdings einen (sehr!) großen Bogen um die Enden des Zylinders machen, hier wäre jeder Aufenthalt absolut tödlich. Hält man sich aber nur in der Mitte des Zylinders auf, könnte man eine gute Chance zum Überleben des Abenteuers haben.
Im Querschnitt sieht man die Raumzeit- Umgebung des Zylinders. Direkt neben dem Zylinder befindet sich die "Verbotene Zone" (rot), hier wäre ein Aufenthalt schon aufgrund der enormen Gezeitenkräfte absolut tödlich. Wenn man in den grünen Ring eintaucht, begibt man sich in die Vergangenheit. Entsprechend weist der hellblaue Ring der Positivität den Bereich aus, in welchem eine Zeitreise in die Zukunft möglich ist.
--------------------------------------------------------------------------------
Wie kommt Tipler nun eigentlich zu seiner Überzeugung, dass eine solche "Maschine" in der Tat Zeitreisen ermöglichen könnte? Um das zu verstehen, beschäftigen wir uns ein wenig mit der Allgemeinen Relativitätstheorie:
Um Bewegungen innerhalb der Raumzeit darzustellen, verwendet man vereinfachte Diagramme. Man benutzt eine senkrechte Achse, um Bewegungen in der Zeit darzustellen (t), die waagerechte (y) dient uns zur Veranschaulichung von Bewegungen in den 3 Raumdimensionen gleichzeitig (wir lassen die 3 Raumdimensionen zu einer einzigen schrumpfen). Das Diagramm ist nicht ganz realistisch, aber es wäre enorm schwierig, wollte man alle 4 Dimensionen darstellen. Blau dargestellt ist ein unbewegtes Teilchen. Da es sich nicht in Bezug auf einen Beobachter im Raum bewegt, sehen wir nur eine Bewegung senkrecht die Zeitachse hinauf.
In dieser Darstellung sieht man nun, wie sich ein Teilchen in der Raumzeit bewegt. Wenn es eine gleichmäßige Geschwindigkeit hat, ergibt sich eine schräg ansteigende gerade Linie. Durch beschleunigte oder verzögerte Bewegung erhält man eine Kurve. Bei Beschleunigung bewegt sich die Kurve von der Zeitachse weg, durch Abbremsen wieder auf sie zu. Solche Linien, ob Kurven oder Geraden innerhalb der Raumzeit nennt man Weltlinien. Eine Weltlinie repräsentiert also den Weg eines Teilchens oder von etwas anderem (z.B. einem Menschen) durch die vierdimensionale Raumzeit.
--------------------------------------------------------------------------------
In diesem Diagramm sieht man die Weltlinien von Photonen. Wenn man das Diagramm der Realität entsprechend gestaltet, wird die Zeitachse in Sekunden unterteilt und die Raumachse in Lichtsekunden (die Strecke, die das Licht in 1 s zurücklegt, also 300 000 km). Eingezeichnet sind jetzt die Weltlinien von Photonen, sie steigen in einem Winkel von 45° an. Größer kann dieser Winkel niemals werden, sonst hätten die Teilchen mehr als Lichtgeschwindigkeit! Alles, was rechts oder links dieser Weltlinien liegt, bleibt für immer unerreichbar. Diesen Bereich bezeichnen wir einfach als "Irgendwo".
In dieses Diagramm wurde eine zweite Raumdimension (x) eingezeichnet. Hierdurch ergibt sich ein kegelförmiges Aussehen der Weltlinien, man nennt deshalb diese Weltlinien auch Lichtkegel. Wenn wir die Lichtgeschwindigkeit als obere Grenze akzeptieren, liegen alle anderen Weltlinien innerhalb dieser Lichtkegel. Doch man sieht noch mehr in diesem Diagramm: am Kreuzungspunkt der Koordinatenlinien, also im Nullpunkt (t, x, y = 0), liegt die Gegenwart. Nach oben hin öffnet sich der Zukunftslichtkegel, nach unten geht es in die Vergangenheit. Wichtig hierbei ist zu wissen, dass jeder Punkt in der Raumzeit einen eigenen Lichtkegel aufweist!
--------------------------------------------------------------------------------
Ein Teilchen, welches sich unterhalb der Lichtgeschwindigkeit bewegt, kann also jede Weltlinie innerhalb des Zukunftskegels als auch des Vergangenheitskegels einnehmen. Man nennt diese Bereiche auch zeitartig, weil die Zeit in jedem Moment des Teilchens eine Rolle spielt. Den Bereich außerhalb der Kegel bezeichnet man als raumartig, er ist solchen Teilchen wie Tachyonen vorbehalten, oder entspricht anderen Universen. Sie sind uns nicht zugänglich, die Zeit ist hier imaginär. Wie gesagt nennt man die Bereiche außerhalb der Lichtkegel auch einfach "Irgendwo". Liegt die Weltlinie direkt auf der Kegeloberfläche, stimmt also mit der eines Photons überein, nennt man sie lichtartig. Diese Weltlinie hat immer eine Steigung von 45°, und das Teilchen bewegt sich mit c.
--------------------------------------------------------------------------------
Raumzeitdiagramme zeigen uns auch, wie sich ein Teilchen in die Vergangenheit bewegen kann. Ereignisse folgen immer eins auf das andere und liegen daher nacheinander auf der Weltlinie, die stets von der Gegenwart in die Zukunft weist. Aber wie kann es sein, dass man trotz Bewegung mit weniger als c in die Vergangenheit geraten könnte? Man sieht im Diagramm eine Weltlinie, die fast in sich gekrümmt ist, wo also ein Ereignis wieder dann eintritt, als es in der Vergangenheit begann. Wie aber könnte eine Weltlinie so verbogen werden? Die Allgemeine Relativitätstheorie hat uns hierzu gezeigt, dass z.B. starke Gravitationsfelder die Raumzeit krümmen. Oder anders ausgedrückt, der Lichtkegel, in welchem sich Teilchen oder Mensch befinden, wird durch diese Krümmung geneigt oder gar gekippt (kleine dunkelblaue Kegel im Diagramm). Wenn demnach Teilchen oder Mensch eine derart stark gekrümmte Raumzeit durchlaufen, könnten sie tatsächlich in die Vergangenheit geraten! Und das, ohne gegen mathematische oder physikalische Gesetze zu verstoßen, und es ist dazu keine Überlichtgeschwindigkeit erforderlich.
--------------------------------------------------------------------------------
Nun betrachten wir noch einmal den Zylinder, der mit mindestens halber Lichtgeschwindigkeit rotieren muss, damit genügend Fliehkräfte erzeugt werden und er nicht unter der eigenen Gravitation zusammen bricht.
Je näher man dem Zylinder kommt, umso mehr wird die umgebende Raumzeit mitgerissen. Weit außerhalb ist noch alles recht "normal", die Raumzeit ist flach und kaum verzerrt, und die Lichtkegel stehen senkrecht im Diagramm (Detail B). Die Zeit verläuft wie gewohnt von der Gegenwart in die Zukunft. Eingezeichnet sind der Übersichtlichkeit halber nur die Zukunftslichtkegel. Wenn man nun weiter vordringt, sieht ein außenstehender Beobachter, dass die Zeit immer mehr durch die Gravitation verlangsamt wird (ähnlich der Annäherung an den Ereignishorizont eines Schwarzen Lochs, siehe weiter oben). Hier würde ein Astronaut in die Zukunft reisen. Je weiter man aber nach innen kommt, um so mehr neigen sich die Kegel, bis sie sich schließlich bei einem Winkel von über 45° überschneiden (Detail A). Sie kippen über die x,y- Koordinaten in den negativen Zeitbereich, Raum und Zeit tauschen ihre Rollen.
Es bildet sich eine geschlossene zeitartige Schleife um den Zylinder, ein Zeitreisender kann mit einer Rakete von Lichtkegel zu Lichtkegel gelangen, ohne dass hierzu Geschwindigkeiten über der des Lichts erforderlich wären. Er kann durch vorsichtiges Navigieren auf spiralförmigen Bahnen beliebig rückwärts durch die Zeit reisen, muss aber peinlich darauf acht geben, dem Zylinder nicht zu nahe zu kommen. Allerdings kann er maximal nur bis zu dem Zeitpunkt zurück, an welchem die Zeitmaschine geschaffen wurde. Der Traum, dem Bau der Pyramiden in Ägypten zuzusehen bleibt daher unerfüllt. Anders ist es mit der Zukunftsreise: sie kann beliebig weit in die Zukunft gehen, und dazu muss der Zylinder sogar nur einen kurzen Moment stabil sein.
--------------------------------------------------------------------------------
Wie realistisch ist nun dieser Tipler-Zylinder? Mathematisch und physikalisch gesehen sind Zeitreisen zulässig. Tiplers Berechnungen haben noch heute ihre Gültigkeit, die beschriebene Zeitmaschine würde tatsächlich funktionieren. Aber es gibt schier unüberwindbare Probleme, wollte man wenigstens 10 oder 20 Neutronensterne zusammenschalten. Die erste Schwierigkeit ist, sie über große Entfernungen transportieren zu müssen. Selbst wenn das einer Superzivilisation gelingen könnte, stände sie doch vor der unlösbaren Aufgabe, die Sterne vor dem Kollaps zu bewahren. Die ungeheure Gravitation würde sie sofort vereinigen und zu einem einzigen Schwarzen Loch kollabieren lassen, bevor noch die erforderliche superschnelle Rotation eingestellt werden könnte. Und wer wollte 20 oder gar 200 Neutronensterne dazu bringen, synchron mit mehreren Milliarden Umdrehungen pro Minute zu rotieren?
Die Allgemeine Relativitätstheorie birgt vielleicht noch manches Geheimnis, dessen Entdeckung uns dennoch irgendwann Reisen in der Zeit und vor allem auch in interstellaren Distanzen erlauben wird.
Man nehme Materie von mindestens 10 Sonnenmassen und presse sie zu einem extrem dünnen Zylinder zusammen, in etwa so, als würde man ein Schwarzes Loch durch eine Spaghettimaschine quetschen. Diesen versetze man dann in hyperschnelle, relativistische Rotation, und schon hat man eine Zeitmaschine, mit welcher man in die Zukunft und in die Vergangenheit reisen kann.
Der amerikanische Professor für Physik und Mathematik Frank J. Tipler hat bereits 1974 einen Artikel veröffentlicht, in welchem er globale Kausalitätsverletzungen durch einen rotierenden Zylinder beschrieb. Die Allgemeine Relativitätstheorie, so Tipler, lässt es zu, dass ein Teilchen durch die umgebende Raumzeit einer Singularität läuft und dabei zur selben Zeit an seinen Startpunkt wie bei seiner Abreise wieder ankommt. Anders gesagt, es müsste zweimal durch ein Wurmloch laufen und würde so eine zeitartige Schleife bilden. Aber der Weg durch eine Singularität ist nicht ganz ohne Gefahren, realistischer wäre daher die Anfertigung eines kompakten Zylinders. In seiner Umgebung ist die Raumzeit sinusförmig gekrümmt, so dass die Zeit schwingt und nicht mehr geradlinig von der Gegenwart zur Zukunft läuft.
--------------------------------------------------------------------------------
Die Zeit in der Umgebung eines solchen Zylinders wird also schwingen und ein Körper, der sich sehr vorsichtig nähert, ist nicht zwangsläufig den unangenehmen Verformungen unterworfen wie bei einem Höllentrip durch eine Singularität.
Solch ein Zylinder sollte theoretisch unendlich lang sein, was natürlich praktisch unmöglich ist. Das Rezept zur Herstellung einer tatsächlich funktionierenden Zeitmaschine klingt dennoch recht einfach: Man nehme etwa 200 Neutronensterne (es darf gerne auch etwas mehr sein!), deren Materie für unseren Zweck genügend kompakt ist, und ordne sie in einer Reihe an. So ergibt sich ein Zylinder von rund 20 km Durchmesser und mindestens 4000 km Länge. Damit keine unbekannten negativen Einflüsse auf die Milchstraße entstehen, sollte man das Gerät außerhalb der Galaxie aufbauen. Nun muss man "nur" noch die Rotation der Neutronensterne synchronisieren und sie soweit auf Trab bringen, dass sie wenigstens auf halbe Lichtgeschwindigkeit kommt, da sonst die Gefahr besteht, dass der Zylinder kollabiert oder explodiert.
--------------------------------------------------------------------------------
Tipler prognostiziert nun, dass man sich auf einem sehr sorgfältig ausgewähltem spiraligen Kurs der Mitte des Zylinders nähern und in die verschiedenen Zeitzonen eintauchen kann. Je nachdem, wie schnell und wo man in diese Zonen gelangt, kann man beliebig weit in der Zeit vor- und zurückgehen oder sich plötzlich in einer entfernten Galaxie wiederfinden. Um nicht in die chaosartig ineinander verwirbelte Raumzeit zu gelangen, muss man allerdings einen (sehr!) großen Bogen um die Enden des Zylinders machen, hier wäre jeder Aufenthalt absolut tödlich. Hält man sich aber nur in der Mitte des Zylinders auf, könnte man eine gute Chance zum Überleben des Abenteuers haben.
Im Querschnitt sieht man die Raumzeit- Umgebung des Zylinders. Direkt neben dem Zylinder befindet sich die "Verbotene Zone" (rot), hier wäre ein Aufenthalt schon aufgrund der enormen Gezeitenkräfte absolut tödlich. Wenn man in den grünen Ring eintaucht, begibt man sich in die Vergangenheit. Entsprechend weist der hellblaue Ring der Positivität den Bereich aus, in welchem eine Zeitreise in die Zukunft möglich ist.
--------------------------------------------------------------------------------
Wie kommt Tipler nun eigentlich zu seiner Überzeugung, dass eine solche "Maschine" in der Tat Zeitreisen ermöglichen könnte? Um das zu verstehen, beschäftigen wir uns ein wenig mit der Allgemeinen Relativitätstheorie:
Um Bewegungen innerhalb der Raumzeit darzustellen, verwendet man vereinfachte Diagramme. Man benutzt eine senkrechte Achse, um Bewegungen in der Zeit darzustellen (t), die waagerechte (y) dient uns zur Veranschaulichung von Bewegungen in den 3 Raumdimensionen gleichzeitig (wir lassen die 3 Raumdimensionen zu einer einzigen schrumpfen). Das Diagramm ist nicht ganz realistisch, aber es wäre enorm schwierig, wollte man alle 4 Dimensionen darstellen. Blau dargestellt ist ein unbewegtes Teilchen. Da es sich nicht in Bezug auf einen Beobachter im Raum bewegt, sehen wir nur eine Bewegung senkrecht die Zeitachse hinauf.
In dieser Darstellung sieht man nun, wie sich ein Teilchen in der Raumzeit bewegt. Wenn es eine gleichmäßige Geschwindigkeit hat, ergibt sich eine schräg ansteigende gerade Linie. Durch beschleunigte oder verzögerte Bewegung erhält man eine Kurve. Bei Beschleunigung bewegt sich die Kurve von der Zeitachse weg, durch Abbremsen wieder auf sie zu. Solche Linien, ob Kurven oder Geraden innerhalb der Raumzeit nennt man Weltlinien. Eine Weltlinie repräsentiert also den Weg eines Teilchens oder von etwas anderem (z.B. einem Menschen) durch die vierdimensionale Raumzeit.
--------------------------------------------------------------------------------
In diesem Diagramm sieht man die Weltlinien von Photonen. Wenn man das Diagramm der Realität entsprechend gestaltet, wird die Zeitachse in Sekunden unterteilt und die Raumachse in Lichtsekunden (die Strecke, die das Licht in 1 s zurücklegt, also 300 000 km). Eingezeichnet sind jetzt die Weltlinien von Photonen, sie steigen in einem Winkel von 45° an. Größer kann dieser Winkel niemals werden, sonst hätten die Teilchen mehr als Lichtgeschwindigkeit! Alles, was rechts oder links dieser Weltlinien liegt, bleibt für immer unerreichbar. Diesen Bereich bezeichnen wir einfach als "Irgendwo".
In dieses Diagramm wurde eine zweite Raumdimension (x) eingezeichnet. Hierdurch ergibt sich ein kegelförmiges Aussehen der Weltlinien, man nennt deshalb diese Weltlinien auch Lichtkegel. Wenn wir die Lichtgeschwindigkeit als obere Grenze akzeptieren, liegen alle anderen Weltlinien innerhalb dieser Lichtkegel. Doch man sieht noch mehr in diesem Diagramm: am Kreuzungspunkt der Koordinatenlinien, also im Nullpunkt (t, x, y = 0), liegt die Gegenwart. Nach oben hin öffnet sich der Zukunftslichtkegel, nach unten geht es in die Vergangenheit. Wichtig hierbei ist zu wissen, dass jeder Punkt in der Raumzeit einen eigenen Lichtkegel aufweist!
--------------------------------------------------------------------------------
Ein Teilchen, welches sich unterhalb der Lichtgeschwindigkeit bewegt, kann also jede Weltlinie innerhalb des Zukunftskegels als auch des Vergangenheitskegels einnehmen. Man nennt diese Bereiche auch zeitartig, weil die Zeit in jedem Moment des Teilchens eine Rolle spielt. Den Bereich außerhalb der Kegel bezeichnet man als raumartig, er ist solchen Teilchen wie Tachyonen vorbehalten, oder entspricht anderen Universen. Sie sind uns nicht zugänglich, die Zeit ist hier imaginär. Wie gesagt nennt man die Bereiche außerhalb der Lichtkegel auch einfach "Irgendwo". Liegt die Weltlinie direkt auf der Kegeloberfläche, stimmt also mit der eines Photons überein, nennt man sie lichtartig. Diese Weltlinie hat immer eine Steigung von 45°, und das Teilchen bewegt sich mit c.
--------------------------------------------------------------------------------
Raumzeitdiagramme zeigen uns auch, wie sich ein Teilchen in die Vergangenheit bewegen kann. Ereignisse folgen immer eins auf das andere und liegen daher nacheinander auf der Weltlinie, die stets von der Gegenwart in die Zukunft weist. Aber wie kann es sein, dass man trotz Bewegung mit weniger als c in die Vergangenheit geraten könnte? Man sieht im Diagramm eine Weltlinie, die fast in sich gekrümmt ist, wo also ein Ereignis wieder dann eintritt, als es in der Vergangenheit begann. Wie aber könnte eine Weltlinie so verbogen werden? Die Allgemeine Relativitätstheorie hat uns hierzu gezeigt, dass z.B. starke Gravitationsfelder die Raumzeit krümmen. Oder anders ausgedrückt, der Lichtkegel, in welchem sich Teilchen oder Mensch befinden, wird durch diese Krümmung geneigt oder gar gekippt (kleine dunkelblaue Kegel im Diagramm). Wenn demnach Teilchen oder Mensch eine derart stark gekrümmte Raumzeit durchlaufen, könnten sie tatsächlich in die Vergangenheit geraten! Und das, ohne gegen mathematische oder physikalische Gesetze zu verstoßen, und es ist dazu keine Überlichtgeschwindigkeit erforderlich.
--------------------------------------------------------------------------------
Nun betrachten wir noch einmal den Zylinder, der mit mindestens halber Lichtgeschwindigkeit rotieren muss, damit genügend Fliehkräfte erzeugt werden und er nicht unter der eigenen Gravitation zusammen bricht.
Je näher man dem Zylinder kommt, umso mehr wird die umgebende Raumzeit mitgerissen. Weit außerhalb ist noch alles recht "normal", die Raumzeit ist flach und kaum verzerrt, und die Lichtkegel stehen senkrecht im Diagramm (Detail B). Die Zeit verläuft wie gewohnt von der Gegenwart in die Zukunft. Eingezeichnet sind der Übersichtlichkeit halber nur die Zukunftslichtkegel. Wenn man nun weiter vordringt, sieht ein außenstehender Beobachter, dass die Zeit immer mehr durch die Gravitation verlangsamt wird (ähnlich der Annäherung an den Ereignishorizont eines Schwarzen Lochs, siehe weiter oben). Hier würde ein Astronaut in die Zukunft reisen. Je weiter man aber nach innen kommt, um so mehr neigen sich die Kegel, bis sie sich schließlich bei einem Winkel von über 45° überschneiden (Detail A). Sie kippen über die x,y- Koordinaten in den negativen Zeitbereich, Raum und Zeit tauschen ihre Rollen.
Es bildet sich eine geschlossene zeitartige Schleife um den Zylinder, ein Zeitreisender kann mit einer Rakete von Lichtkegel zu Lichtkegel gelangen, ohne dass hierzu Geschwindigkeiten über der des Lichts erforderlich wären. Er kann durch vorsichtiges Navigieren auf spiralförmigen Bahnen beliebig rückwärts durch die Zeit reisen, muss aber peinlich darauf acht geben, dem Zylinder nicht zu nahe zu kommen. Allerdings kann er maximal nur bis zu dem Zeitpunkt zurück, an welchem die Zeitmaschine geschaffen wurde. Der Traum, dem Bau der Pyramiden in Ägypten zuzusehen bleibt daher unerfüllt. Anders ist es mit der Zukunftsreise: sie kann beliebig weit in die Zukunft gehen, und dazu muss der Zylinder sogar nur einen kurzen Moment stabil sein.
--------------------------------------------------------------------------------
Wie realistisch ist nun dieser Tipler-Zylinder? Mathematisch und physikalisch gesehen sind Zeitreisen zulässig. Tiplers Berechnungen haben noch heute ihre Gültigkeit, die beschriebene Zeitmaschine würde tatsächlich funktionieren. Aber es gibt schier unüberwindbare Probleme, wollte man wenigstens 10 oder 20 Neutronensterne zusammenschalten. Die erste Schwierigkeit ist, sie über große Entfernungen transportieren zu müssen. Selbst wenn das einer Superzivilisation gelingen könnte, stände sie doch vor der unlösbaren Aufgabe, die Sterne vor dem Kollaps zu bewahren. Die ungeheure Gravitation würde sie sofort vereinigen und zu einem einzigen Schwarzen Loch kollabieren lassen, bevor noch die erforderliche superschnelle Rotation eingestellt werden könnte. Und wer wollte 20 oder gar 200 Neutronensterne dazu bringen, synchron mit mehreren Milliarden Umdrehungen pro Minute zu rotieren?
Die Allgemeine Relativitätstheorie birgt vielleicht noch manches Geheimnis, dessen Entdeckung uns dennoch irgendwann Reisen in der Zeit und vor allem auch in interstellaren Distanzen erlauben wird.